Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

排水管堵塞引起的高铁隧道结构变形与渗流场特征模拟试验研究

李林毅, 阳军生, 高超, 王树英, 王子建, 相懋龙

李林毅, 阳军生, 高超, 王树英, 王子建, 相懋龙. 排水管堵塞引起的高铁隧道结构变形与渗流场特征模拟试验研究[J]. 岩土工程学报, 2021, 43(4): 715-724. DOI: 10.11779/CJGE202104014
引用本文: 李林毅, 阳军生, 高超, 王树英, 王子建, 相懋龙. 排水管堵塞引起的高铁隧道结构变形与渗流场特征模拟试验研究[J]. 岩土工程学报, 2021, 43(4): 715-724. DOI: 10.11779/CJGE202104014
LI Lin-yi, YANG Jun-sheng, GAO Chao, WANG Shu-ying, WANG Zi-jian, XIANG Mao-long. Simulation tests on structural deformation and seepage field of high-speed railway tunnels under drainage clogging[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 715-724. DOI: 10.11779/CJGE202104014
Citation: LI Lin-yi, YANG Jun-sheng, GAO Chao, WANG Shu-ying, WANG Zi-jian, XIANG Mao-long. Simulation tests on structural deformation and seepage field of high-speed railway tunnels under drainage clogging[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 715-724. DOI: 10.11779/CJGE202104014

排水管堵塞引起的高铁隧道结构变形与渗流场特征模拟试验研究  English Version

基金项目: 

高铁联合基金项目 U1934211

国家自然科学基金项目 51878669

新疆维吾尔自治区重大科技专项 2018A03003

中央高校基本科研业务费专项资助项目 2019zzts291

详细信息
    作者简介:

    李林毅(1994—),男,湖南郴州人,博士研究生。从事隧道工程防排水体系研究工作。E-mail: tunnel_lly@csu.edu.cn

    通讯作者:

    阳军生, E-mail: jsyang@csu.edu.cn

  • 中图分类号: U45

Simulation tests on structural deformation and seepage field of high-speed railway tunnels under drainage clogging

  • 摘要: 基于3D打印技术构建了高铁隧道结构及排水系统设施精细模型,提出了切实可行的隧道堵管模拟方法及模拟装置,依托典型病害案例开展了堵管病害相似模型模拟试验,探讨了在不同堵管条件、不同地层水头下隧道渗流场(隧道排水量、结构外水压力)及结构位移量的变化规律特征。研究结果表明:随堵塞程度加深,隧道排水量呈现先慢后快型下降趋势,具体为排水管堵塞率为50%前隧道排水量下降幅度较小,而堵塞率达50%后隧道排水量骤减直至不排水;底部结构隆起位移存在“隧底>内轨>外轨”的量值关系,且随堵塞程度加深隆起位移呈现先慢后快型增长趋势;受排水减少影响,堵管后结构外水压力逐步由“隧底最大,拱顶、拱腰次之,墙脚最小”的扇贝型分布转为“静水压”型分布;至全堵条件下地层水头40 m时试验位移结果与现场病害特征吻合良好,验证了上述模拟方法的可行性与有效性。研究成果以期为富水隧道堵管防治及类似病害评价提供借鉴与指导作用。
    Abstract: Based on 3D printing technology, a fine model for high-speed railway tunnel structure and drainage facilities is constructed, and a feasible simulation method for drainage clogging is put forward. Based on a typical disease case, a simulation test on drainage clogging is carried out, and under different conditions of drainage clogging and groundwater level, the seepage field (including drainage volume and external water pressure) and structural deformation are discussed. The results show that with the deepening of blockage, the drainage volume shows a slow downward trend and then a fast downward trend, and specifically, when the drainage pipe blockage is less than 50%, the tunnel drainage decreases slightly, and when the blockage is more than 50%, the tunnel drainage decreases sharply until no drainage occurs. The displacement of bottom structure uplift has the quantitative relation of "tunnel bottom > inner rail > outer rail", and with the increase of blockage degree, the uplift displacement slowly grows first and then fast grows. Affected by the reduction of drainage, the external water pressure of the structure gradually changes from "the maximum at the bottom, next at the crown and waist of the arch, and minimum at the foot of the wall" to the "hydrostatic pressure" distribution. The test results of displacement coincide well with the characteristics of field defects when the water head is 40 m and the drainage pipe is fully blocked, which verifies the feasibility and validity of the proposed simulation method. The research results may provide reference and guidance for prevention of pipe plugging and evaluation of similar defects of water-rich tunnels.
  • 图  1   病害时隧道排水情况

    Figure  1.   Drainage conditions during defects occurrence

    图  2   Vc级围岩支护结构断面图[17]

    Figure  2.   Section diagram of Vc-grade support structure[17]

    图  3   国内铁路隧道常用防排水体系[18]

    Figure  3.   Common waterproof and drainage systems for railway tunnels in China[18]

    图  4   高铁隧道3D打印制作流程

    Figure  4.   3D printing process for high-speed railway tunnel

    图  5   排水系统3D打印制作流程

    Figure  5.   3D printing process for drainage system

    图  6   排水管堵塞频发部位示意图

    Figure  6.   Frequent location of drainage pipe blockage

    图  7   堵塞头制作及使用流程

    Figure  7.   Fabrication and use process of pipe plugs

    图  8   渗流试验系统及其组成

    Figure  8.   Seepage test system and its composition

    图  9   测试元件布设情况

    Figure  9.   Layout of test sensors

    图  10   试验流程

    Figure  10.   Test procedure

    图  11   模型试验现场排水情况

    Figure  11.   Field drainage conditions of model tests

    图  12   模型试验排水量相关关系曲线

    Figure  12.   Correlation curves of drainage volume

    图  13   隧道结构外水压力测试结果

    Figure  13.   Test results of external water pressure

    图  14   隧道典型部位位移测试结果

    Figure  14.   Test results of displacement at typical locations

    图  15   试验数据汇总分析图

    Figure  15.   Summary analysis of test data

    表  1   模型试验主要相似关系

    Table  1   Similar relationships in model tests

    相似比计算公式量值
    基础相似比几何相似比CL=Lm/Lp  1∶40
    重度相似比Cγ=Lm/Lp 1∶1
    渗透系数相似比Ck=Lm/Lp 1∶1
    渗流参数地层水头相似比CH=CL  1∶1
    渗透时间相似比CT=CH/Ck 1∶40
    水压力相似比CP=CγCH 1∶40
    渗流量相似比CQ=CH3/CT 1∶1600
    变形参数弹性模量相似比CE=CγCL 1∶40
    下载: 导出CSV

    表  2   渗透系数测试结果

    Table  2   Test results of permeability coefficient

    试验组号渗透系数/(cm·s-1)试验均值/(cm·s-1)现场值[16]/(cm·s-1)
    11.06×10-31.05×10-31×10-3
    21.04×10-3
    31.04×10-3
    下载: 导出CSV

    表  3   各排水管打印模型尺寸参数

    Table  3   Size parameters of drainage pipe model

    类型内径/mm外径/mm备注
    环向排水管2.54.5
    纵向排水管3.05.0
    横向排水管2.5掏空预留于结构内,无需管壁加厚
    下载: 导出CSV

    表  4   试验工况

    Table  4   Test conditions

    工况地层水头高度/m堵管程度
    10每组地层水头下包括5种堵塞程度细分工况,具体为全排、堵塞25%、堵塞50%、堵塞75%、全堵
    210
    320
    430
    540
    650
    760
    下载: 导出CSV
  • [1] 刘坤, 刘新荣, 钟祖良, 等. 隧道排水系统非对称堵塞对衬砌外水压力的影响[J]. 地下空间与工程学报, 2018, 14(2): 369-378. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201802012.htm

    LIU Kun, LIU Xin-rong, ZHONG Zu-liang, et al. Regulation of external water pressure of tunnel lining with asymmetric blocked drainage system[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(2): 369-378. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201802012.htm

    [2] 蒋雅君, 杜坤, 陶磊, 等. 岩溶隧道排水系统堵塞机理的调查与分析[J]. 铁道标准设计, 2019, 63(7): 131-135. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201907025.htm

    JIANG Ya-jun, DU Kun, TAO Lei, et al. Investigation and discussion on blocking mechanism of drainage system in karst tunnels[J]. Railway Standard Design, 2019, 63(7): 131-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201907025.htm

    [3] 铁路隧道设计规范:TB10003—2016[S]. 2016.

    Code for Design of Railway Tunnel: TB10003—2016[S]. 2016. (in Chinese)

    [4] 蒋雅君, 杜坤, 廖甲影, 等. 岩溶隧道衬砌施工缝排水设施可维护性试验研究[J]. 铁道标准设计, 2019, 63(11): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201911019.htm

    JIANG Ya-jun, DU Kun, MIAO Jia-ying, et al. Experimental research on maintainability of drainage facilities in lining construction joints of karst tunnel[J]. Railway Standard Design, 2019, 63(11): 91-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201911019.htm

    [5] 高春君, 向立辉, 张学富, 等. 不同水位下隧道排水管结晶堵塞引起的衬砌应力分析[J]. 重庆交通大学学报(自然科学版), 2019, 38(5): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201905008.htm

    GAO Chun-jun, XIANG Li-hui, ZHANG Xue-fu, et al. Lining stress caused by crystal lization clogging of tunnel drainage pipe at different water levels[J]. Journal of Chongqing Jiaotong University (Natural Sciences), 2019, 38(5): 49-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201905008.htm

    [6] 周卓. 岩溶地区地下水渗流结晶堵塞隧道排水管机理研究及处治建议[D]. 西安: 长安大学, 2015.

    ZHOU Zhuo. Study on the Plug of the Tunnel Drainage Pipe Mechanism Caused by Groundwater Seepage Crystallization in Karst Area and the Proposal of Treatment[D]. Xi'an: Chang'an University, 2015. (in Chinese)

    [7]

    WU Z L, CUI Y J, BARRETT A G, et al. Role of surrounding soils and pore water in calcium carbonate precipitation in railway tunnel drainage system[J]. Transportation Geotechnics, 2019, 21: 1-8.

    [8]

    JUNG H S, HAN Y S, CHUNG S R, et al. Evaluation of advanced drainage treatment for old tunnel drainage system in Korea[J]. Tunnelling and Underground Space Technology, 2013, 38: 476-486.

    [9] 刘坤. 隧道排水系统局部堵塞后的衬砌外水压力及其受力特性研究[D]. 重庆: 重庆大学, 2017.

    LIU Kun. Study on External Water Pressure and Force Characteristics of Tunnel Lining with Partial Blocked Drainage System[D]. Chongqing: Chongqing University, 2017. (in Chinese)

    [10] 代鸿明. 运营铁路隧道水害引发的仰拱起鼓及衬砌开裂防治技术研究[J]. 现代隧道技术, 2016, 53(3): 202-206. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201603031.htm

    DAI Hong-ming. Prevention and treatment of invert heaving and lining cracking induced by water disasters in operating railway tunnels[J]. Modern Tunnelling Technology, 2016, 53(3): 202-206. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201603031.htm

    [11]

    CHEN Y F, CUI Y J, BARRETT A G, et al. Investigation of calcite precipitation in the drainage system of railway tunnels[J]. Tunnelling and Underground Space Technology, 2019, 84: 45-55.

    [12] 刘新荣, 刘坤, 钟祖良, 等. 深埋隧道排水系统非对称堵塞后渗流场的解析研究[J]. 岩石力学与工程学报, 2017, 36(5): 1088-1100. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201705005.htm

    LIU Xin-rong, LIU Kun, ZHONG Zu-liang, et al. Analytical study on seepage field of the deep tunnel with asymmetric blocked drainage system[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5): 1088-1100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201705005.htm

    [13] 李铁钟. 某高速铁路隧道无砟轨道上拱处治技术[J]. 铁道标准设计, 2018, 62(5): 125-128. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201805026.htm

    LI Tie-zhong. Treatment technology for ballastless track uplift of a high speed railway tunnel[J]. Railway Standard Design, 2018, 62(5): 125-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201805026.htm

    [14] 肖广智. 从当前铁路隧道衬砌典型病害谈设计施工改进措施[J]. 隧道建设(中英文), 2018, 38(9): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201809005.htm

    XIAO Guang-zhi. Discussion on design and construction improvement measures based on current typical diseases of railway tunnel lining[J]. Tunnel Construction, 2018, 38(9): 23-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201809005.htm

    [15] 张会刚, 张广泽, 喻洪平, 等. 沪昆客专麻拉寨隧道岩溶发育规律及突水原因探析[J]. 路基工程, @@@2017(1): 208-212. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201701043.htm

    ZHANG Hui-gang, ZHANG Guang-ze, YU Hong-ping, et al. Analysis of karst development law and water burst cause of malazhai tunnel in Shanghai—Kunming Passenger dedicated railway[J]. Subgrade Engineering, @@@2017(1): 208-212. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201701043.htm

    [16] 阳军生, 李林毅, 方星桦, 等. 沪昆高铁贵州段麻拉寨隧道水害整治效果分析及安全性评价[R]. 长沙: 湖南中大设计院有限公司, 2017.

    YANG Jun-sheng, LI Lin-yi, FANG Xing-hua, et al. Analysis of Effect on Water Damage Remediation and Safety Evaluation in the Mala Zhai Tunnel in Shanghai-Kunming Passenger Dedicated Railway[R]. Changsha: Hunnan Zhongda Design Institute Co., Ltd., 2017. (in Chinese)

    [17] 中铁第二勘察设计院集团有限公司. 新建铁路沪昆客运专线长沙至昆明段参考图[Z]. 2010.

    China Railway Second Survey and Design Institute Group. New Railway Shanghai-Kunming Passenger Dedicated Line Changsha to Kunming Section Reference Map[Z]. 2010. (in Chinese)

    [18]

    LI P F, LIU H C, ZHAO Y, et al. A bottom-to-up drainage and water pressure reduction system for railway tunnels[J]. Tunnelling and Underground Space Technology, 2018, 81: 296-305.

    [19] 李铮, 何川, 杨赛舟, 等. 不考虑开挖扰动影响的隧道涌水量预测模型试验研究[J]. 岩石力学与工程学报, 2016, 35(12): 2499-2506. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201612014.htm

    LI Zheng, HE Chuan, YANG Sai-zhou, et al. Experimental study on tunnel inflow without considering the influence of excavation disturbance[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2499-2506. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201612014.htm

    [20] 于丽, 方霖, 董宇苍, 等. 基于围岩渗透影响范围的隧道外水压力计算方法模型试验研究[J]. 岩石力学与工程学报, 2018, 37(10): 85-95. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810010.htm

    YU Li, FANG Lin, DONG Yu-cang, et al. Research on the evaluation method of the hydraulic pressure on tunnel lining according to the range of seepage field[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 85-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810010.htm

    [21] 李铮, 何川, 高翔, 等. 岩石隧道渗流模型试验相似材料的研制及应用[J]. 哈尔滨工业大学学报, 2017(9): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201709005.htm

    LI Zheng, HE Chuan, GAO Xiang, et al. Development and application of a similar material for rock tunnel seepage model test[J]. Journal of Harbin Institute of Technology, 2017(9): 39-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201709005.htm

    [22] 江权, 宋磊博. 3D打印技术在岩体物理模型力学试验研究中的应用研究与展望[J]. 岩石力学与工程学报, 2018, 37(1): 23-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801003.htm

    JIANG Quan, SONG Lei-bo. Application and prospect of 3D printing technology to physical modeling in rock mechanics[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 23-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801003.htm

    [23]

    ZUO Z B, GONG J, HUANG Y L, et al Experimental research on transition from scale 3D printing to full-size printing in construction[J]. Construction and Building Materials, 2019, 208: 350-360.

    [24] 李林毅, 阳军生, 王立川, 等. 3D打印技术在高铁隧道仰拱隆起病害模拟试验中的应用与研究[J]. 岩石力学与工程学报, 2020, 39(7): 1369-1384. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202007007.htm

    LI Lin-i, YANG Jun-heng, WANG Li-huan, et al. Application and research of 3D printing technology in simulation test of invert heaving disease of high-speed railway tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(7): 1369-1384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202007007.htm

  • 期刊类型引用(2)

    1. 牛向东,侯克鹏,孙华芬. 断层穿过上覆围岩巷道破坏力学机理及控制技术研究. 矿业研究与开发. 2023(04): 60-67 . 百度学术
    2. 郑强强,徐颖,胡浩,钱佳威,宗琦,谢平. 单轴荷载作用下砂岩的破裂与速度结构层析成像. 岩土工程学报. 2021(06): 1069-1077 . 本站查看

    其他类型引用(7)

图(15)  /  表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 9
出版历程
  • 收稿日期:  2020-03-26
  • 网络出版日期:  2022-12-04
  • 刊出日期:  2021-03-31

目录

    /

    返回文章
    返回