Review and research on osmotic suction of saturated saline soils
-
摘要: 为了能够准确地计算不同含盐量、盐类和温度条件下饱和盐渍土中渗透吸力的大小,首先从试验和理论方面对渗透吸力的研究成果做了简要的回顾;其次通过不同温度条件下氯化钠和硫酸钠溶液的电导率试验,探讨了两溶液饱和后土体渗透吸力与浓度的相互关系;最后基于分形理论和溶质电离度分别对EC模型和van't Hoff方程进行了改进,并对改进后的模型进行了相关的数值分析。试验结果表明氯化钠饱和后土体的渗透吸力与浓度呈幂函数增长关系,而饱和硫酸盐渍土的渗透吸力随浓度的增大呈指数关系。因此表现出硫酸盐渍土的渗透吸力先大于氯盐渍土,而在某一浓度之后氯盐渍土的渗透吸力大于硫酸盐渍土,且浓度值mA随温度的增大呈线性增长关系。数值分析结果表明改进后的模型能够实现复杂条件下的渗透吸力计算,且优于传统模型。Abstract: In order to accurately calculate the osmotic suction in saturated saline soils under different salt contents, salt types and temperature conditions, firstly, a brief review is made of the research results of osmotic suction from the test and theoretical aspects. Secondly, through the electrical conductivity tests on sodium chloride and sodium sulfate solution under different temperature conditions, the relationship between the soil osmotic suction and the concentration after saturation of the two solutions is discussed. Finally, based on the fractal theory and solute ionization degree, the EC model and van't Hoff equation are improved, respectively, and the improved model is analyzed numerically. The test results show that the osmotic suction of the soil after sodium chloride saturation has an increase of power function with the concentration, while the osmotic suction of the soil after sodium sulphate exponentially increases with concentration. Therefore, the osmotic suction of sulphate saline soil is higher than that of chlorine saline soil at first, while that of chlorine saline soil is higher than that of sulphate saline soil after a certain concentration, and the concentration value mA of intersection point A increases linearly with the increase of temperature. The numerical analysis results show that the improved model can calculate the osmotic suction under complex conditions and is superior to the traditional models.
-
-
表 1 单一盐溶液的浓度配置
Table 1 Concentration configuration of single salt solution
10℃ 15℃ 20℃ 25℃ 30℃ 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.6 0.6 0.6 0.6 0.6 0.8 0.8 0.8 0.8 0.8 — 1.0 1.0 1.0 1.0 — — 1.2 1.2 1.2 — — 1.5 1.5 1.5 — — — 1.8 1.8 表 2 混合盐溶液的浓度配置
Table 2 Concentration configuration of mixed salt solutions
0.6 0.15 0.1 0.1 0.05 0.2 0.8 0.20 0.2 0.2 0.075 0.4 1.0 0.25 0.6 0.6 0.20 0.8 1.2 0.30 0.8 0.8 0.25 1.0 注: , 。 表 3 拟合参数值(
, MPa) Table 3 Values of fitting parameters (
, MPa) 被拟合项 n Df EC–π关系 Mata 0.1976 1.0489 0.34 2.61 Rao 0.34 2.588 Arifin 0.34 2.55 van't Hoff 式(5) 0.1239 1.2986 0.34 2.51 式(7) 0.34 2.55 -
[1] GENS A. Soil–environment interactions in geotechnical engineering[J]. Géotechnique, 2010, 60(1): 3-74. doi: 10.1680/geot.9.P.109
[2] NIXON J F, LEM G. Creep and strength testing of frozen saline fine-grained soils[J]. Canadian Geotechnical Journal, 1984, 21(3): 518-529. doi: 10.1139/t84-054
[3] 高红波, 梁卫国, 杨晓琴, 等. 高温盐溶液浸泡作用下石膏岩力学特性试验研究[J]. 岩石力学与工程学报, 2011, 30(5): 935-943. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105010.htm GAO Hong-bo, LIANG Wei-guo, YANG Xiao-qin, et al. Experimental study of mechanical property of gypsum rock soaked in hot saturated brine[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 935-943. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105010.htm
[4] WITTEVEEN P, FERRARI A, LALOUI L. An experimental and constitutive investigation on the chemo-mechanical behaviour of a clay[J]. Géotechnique, 2013, 63(3): 244-255. doi: 10.1680/geot.SIP13.P.027
[5] 张彤炜, 邓永锋, 刘松玉, 等. 渗透吸力对重塑黏土的压缩和渗透特性影响的试验研究[J]. 岩土工程学报, 2014, 36(12): 2260-2266. doi: 10.11779/CJGE201412014 ZHANG Tong-wei, DENG Yong-feng, LIU Song-yu, et al. Experimental investigation of osmotic suction effect on hydro-mechanical behaviour of remolded clay[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2260-2266. (in Chinese) doi: 10.11779/CJGE201412014
[6] 颜荣涛, 纪文栋, 陈星欣, 等. 盐溶液饱和黏土的力学行为模拟[J]. 岩土力学, 2018, 39(2): 546-552. doi: 10.16285/j.rsm.2017.0809 YAN Rong-tao, JI Wen-dong, CHEN Xing-xin, et al. Modeling mechanical behaviors of clayey soil saturated by salt solution[J]. Rock and Soil Mechanics, 2018, 39(2): 546-552. (in Chinese) doi: 10.16285/j.rsm.2017.0809
[7] LORET B, HUECKEL T, GAJO A. Chemo-mechanical coupling in saturated porous media: elastic-plastic behaviour of homoionic expansive clays[J]. International Journal of Solids & Structures, 2002, 39(10): 2773-2806.
[8] MATA C, ROMERO E, LEDESMA A. Hydro-chemical effects on water retention in bentonite-sand mixtures[C]//Proceedings of the 3rd International Conference on Unsaturated Soil. Recife, Brazil: Swets & Zeitlinger, 2002: 283-288.
[9] RAO M S, SHIVANANDA P. Role of osmotic suction in swelling of salt-amended clays[J]. Canadian Geotechnical Journal, 2005, 42(1): 307-315. doi: 10.1139/t04-086
[10] ARIFIN Y F, SCHANZ T. Osmotic suction of highly plastic clays[J]. Acta Geotechnica, 2009, 4(3): 177-191. doi: 10.1007/s11440-009-0097-0
[11] GLASSTONE S. Textbook of Physical Chemistry[M]. 2nd ed. New Delhi: Macmillan India, 1974.
[12] XU Y F, XIANG G S, JIANG H, et al. Role of osmotic suction in volume change of clays in salt solution[J]. Applied Clay Science, 2014, 101: 354-361. doi: 10.1016/j.clay.2014.09.006
[13] 周凤玺, 王立业, 赖远明. 饱和盐渍土的一维蠕变试验与模型研究[J]. 岩土工程学报, 2020, 42(1): 142-149. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001023.htm ZHOU Feng-xi, WANG Li-ye, LAI Yuan-ming. One-dimensional creep test and model study on saturated saline soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 142-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001023.htm
[14] 王立业, 周凤玺, 秦虎. 饱和盐渍土分数阶蠕变模型及试验研究[J]. 岩土力学, 2020, 41(2): 543-551. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002026.htm WANG Li-ye, ZHOU Feng-xi, QIN Hu. Fractional creep model and experimental study of saturated saline soil[J]. Rock and Soil Mechanics, 2020, 41(2): 543-551. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002026.htm
[15] BOLT G H, MILLER R D. Compression studies of illite suspensions1[J]. Soil Science Society of America Journal, 1955, 19(3): 285-288. doi: 10.2136/sssaj1955.03615995001900030010x
[16] BOLT G H. Physico-chemical analysis of the compressibility of pure clays[J]. Géotechnique, 1956, 6(2): 86-93. doi: 10.1680/geot.1956.6.2.86
[17] MESRI G, OLSON R E. Consolidation characteristics of montmorillonite[J]. Géotechnique, 1971, 21(21): 341-352.
[18] SRIDHARAN A, RAO G V. Mechanisms controlling volume change of saturated clays and the role of the effective stress concept[J]. Géotechnique, 1973, 23(3): 359-382. doi: 10.1680/geot.1973.23.3.359
[19] SRIDHARAN A, RAO G V. Shear strength behaviour of saturated clays and the role of the effective stress concept[J]. Géotechnique, 1979, 29(2): 177-193. doi: 10.1680/geot.1979.29.2.177
[20] MARINE I W, FRITZ S J. Osmotic model to explain anomalous hydraulic heads[J]. Water Resources Research, 1981, 17(1): 73-82. doi: 10.1029/WR017i001p00073
[21] FRITZ S J. Ideality of clay membranes in osmotic processes: a review[J]. Clays and Clay Minerals, 1986, 34(2): 214-223. doi: 10.1346/CCMN.1986.0340212
[22] GAJO A, LORET B, HUECKEL T. Electro-chemo- mechanical couplings in saturated porous media: Elastic-plastic behaviour of heteroionic expansive clays[J]. International Journal of Solids and Structures, 2002, 39(16): 4327-4362. doi: 10.1016/S0020-7683(02)00231-7
[23] GAJO A, LORET B. Finite element simulations of chemo-mechanical coupling in elastic–plastic homoionic expansive clays[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(31/32): 3489-3530.
[24] GUIMARAES L D N, GENS A, OLIVELLA S. Coupled thermo-hydro-mechanical and chemical analysis of expansive clay subjected to heating and hydration[J]. Transport in Porous Media, 2007, 66(3): 341-372. doi: 10.1007/s11242-006-0014-z
[25] WEI C F. A theoretical framework for modeling the chemomechanical behavior of unsaturated soils[J]. Vadose Zone Journal, 2014, 13(9): 1-21. doi: 10.2136/vzj2014.04.0036
[26] FREDLUND , RAHARDJO D G. Soil Mechanics for Unsaturated Soils[M]. New York: Wiley, 1993.
[27] TRIPATHY S, LEONG E C, RAHARDJO H. Total suction measurement of unsaturated soils with a device using the chilled-mirror dew-point technique[J]. Géotechnique, 2003, 53(2): 173-182. doi: 10.1680/geot.2003.53.2.173
[28] PERONI N, TARANTINO A. Measurement of Osmotic Suction Using the Squeezing Technique[M]//Unsaturated Soils: Experimental Studies, 2005.
[29] LEONG E C, TRIPATHY S, RAHARDJO H. Total suction measurement of unsaturated soils with a device using the chilled-mirror dew-point technique[J]. Géotechnique, 2003, 53(2): 173-182. doi: 10.1680/geot.2003.53.2.173
[30] CARDOSO R, ROMERO E, LIMA A, et al. A Comparative Study of Soil Suction Measurement Using Two Different High-Range Psychrometers[M]. Heidelberg: Springer Berlin, 2007.
[31] USDA. Agriculture handbook 60, Diagenesis and Improvement of Saline and Alkali Soils[M]. California: United States Salinity Laboratory, 1954.
[32] RAO S, REVANASIDDAPPA K. Role of soil structure and matric suction in collapse of a compacted clay soil[J]. Geotechnical Testing Journal, 2003, 26(1): 1-9.
[33] RAO S M, THYAGARAJ T. Swell–compression behaviour of compacted clays under chemical gradients[J]. Canadian Geotechnical Journal, 2007, 44(5): 520-532. doi: 10.1139/t07-002
[34] USDA. Agricultural Handbook 60, Diagnosis and Improvement of Saline and Alkali Soils[M]. Washington D C: United States Salinity Laboratory, 1950.
[35] IYER B, HODDINOTT K B, LAMB R O. Pore Water Extraction-Comparison of Saturation Extract and High- Pressure Squeezing[M]. Philadelphia: American Society for Testing and Materials, 1990: 159-170.
[36] SACCHI E, MICHELOT J L, PITSCH H, et al. Extraction of water and solutes from argillaceous rocks for geochemical characterisation: Methods, processes and current understanding[J]. Hydrogeology Journal, 2001, 9(1): 17-33. doi: 10.1007/s100400000113
[37] MANHEIM F T. A Hydraulic Squeezer for Obtaining Interstitial Water from Consolidated and Unconsolidated Sediments[R]. Virginia: US Geological Survey, 1966: 256-261.
[38] ENGELHARDT W V, GAIDA K H. Concentration changes of pore solutions during compaction of clay sediments[J]. Journal of Sedimentary Research, 1963, 33(4): 919-930. doi: 10.1306/74D70F74-2B21-11D7-8648000102C1865D
[39] MARIANO A D, AIRÒ F C, VALORE C. Retention curves and 1-D behaviour of a compacted tectonised unsaturated clay[C]//International Workshop on Unsaturated Soils, 2000, Rotterdam.
[40] KRAHN J, FREDLUND D G. On total, matric and osmotic suction[J]. Soil Science, 1972, 114(5): 339-348. doi: 10.1097/00010694-197211000-00003
[41] RIDLEY A M, WRAY W K. Suction measurement: a review of current theory and practices[C]//International Conference on Unsaturated Soils/UNSAT 95, 1996, Paris: 1293-1322.
[42] van't HOFF J H. The role of osmotic pressure in the analogy between solutions and gases[J]. Zeitschrift Für Physikalische Chemie, 1887, 1(1): 481-508. (in Germany)
[43] MEYER L. About the essence of osmotic printing[J]. Zeitschrift Für Physikalische Chemie, 1889, 5(1): 174-176. (in Germany)
[44] LAAR van J J. The thermodynamics of electrolytic dissociation[J]. Zeitschrift für Physikalische Chemie, 1982, 10U(1): 242-254. (in Germany)
[45] DAO V N T, MORRIS P H, DUX P F. On equations for the total suction and its matric and osmotic components[J]. Cement and Concrete Research, 2008, 38(11): 1302-1305. doi: 10.1016/j.cemconres.2008.06.004
[46] T M L . Osmotic pressure or osmotic suction?[J]. Nature, 1916, 97(2423): 122-123.
[47] GRASLEY Z C, RAJAGOPAL K R. Revisiting total, matric, and osmotic suction in partially saturated geomaterials[J]. Zeitschrift für angewandte Mathematik und Physik, 2012, 63(2): 373-394. doi: 10.1007/s00033-011-0168-6
[48] SPOSITO G. The Thermodynamics of Soil Solution[M]. Oxford: Oxford University Press, 1981.
[49] SUN D A, CUI H, SUN W. Swelling of compacted sand–bentonite mixtures[J]. Applied Clay Science, 2009, 43(3/4): 485-492.
[50] LANG A R G. Osmotic coefficients and water potential of sodium chloride solutions from 0 to 40 degrees C[J]. Australian Journal of Chemistry, 1967, 20(9): 2017-2023. doi: 10.1071/CH9672017
[51] PITZER K S. Thermodynamics of electrolytes: I theoretical basis and general equations[J]. The Journal of Physical Chemistry B, 1973, 77(2): 268-277. doi: 10.1021/j100621a026
[52] PITZER K S, MAYORGA G. Thermodynamics of electrolytes: II activity and osmotic coefficients for strong electrolytes with one or both ions univalent[J]. The Journal of Physical Chemistry, 1973, 77(19): 2300-2308. doi: 10.1021/j100638a009
[53] BARBOUR S L, FREDLUND D G. Mechanisms of osmotic flow and volume change in clay soils[J]. Canadian Geotechnical Journal, 1989, 26(4): 551-562. doi: 10.1139/t89-068
[54] KIM H T, FREDERICK W J. Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25℃: 1 Single salt parameters[J]. Journal of Chemical & Engineering Data, 1988, 33(2): 177-184.
[55] 蒋明镜. 现代土力学研究的新视野——宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm JIANG Ming-jing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
[56] WYLLIE M R J, ROSE W. Some theoretical considerations related to the quantitative evaluation of the physical characteristics of reservoir rock from electrical log data[J]. Journal of Petroleum Technology, 1950, 2(4): 105-118. doi: 10.2118/950105-G
[57] ARCHIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Transactions of the AIME, 146(1): 54-62. doi: 10.2118/942054-G
[58] GHANBARIAN B, HUNT A G, EWING R P, et al. Tortuosity in porous media: a critical review[J]. Soil Science Society of America Journal, 2013, 77(5): 1461-1477.
[59] COLEMAN S W, VASSILICOS J C. Transport properties of saturated and unsaturated porous fractal materials[J]. Physical Review Letters, 2008, 100(3): 035504.
[60] WEI W, CAI J C, HU X Y, et al. An electrical conductivity model for fractal porous media[J]. Geophysical Research Letters, 2015, 42(12): 4833-4840.
[61] MENG H, SHI Q, LIU T Y, et al. The percolation properties of electrical conductivity and permeability for fractal porous media[J]. Energies, 2019, 12(6): 1-15.
[62] BATES S J. Osmotic pressure and concentration in solutions of electrolytes, and the calculation of the degree of ionization[J]. Journal of the American Chemical Society, 2002, 37(6): 1421-1445.