Citation: | ZHOU Feng-xi, WANG Li-ye, LAI Yuan-ming. Review and research on osmotic suction of saturated saline soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1199-1210. DOI: 10.11779/CJGE202007003 |
[1] |
GENS A. Soil–environment interactions in geotechnical engineering[J]. Géotechnique, 2010, 60(1): 3-74. doi: 10.1680/geot.9.P.109
|
[2] |
NIXON J F, LEM G. Creep and strength testing of frozen saline fine-grained soils[J]. Canadian Geotechnical Journal, 1984, 21(3): 518-529. doi: 10.1139/t84-054
|
[3] |
高红波, 梁卫国, 杨晓琴, 等. 高温盐溶液浸泡作用下石膏岩力学特性试验研究[J]. 岩石力学与工程学报, 2011, 30(5): 935-943. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105010.htm
GAO Hong-bo, LIANG Wei-guo, YANG Xiao-qin, et al. Experimental study of mechanical property of gypsum rock soaked in hot saturated brine[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 935-943. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105010.htm
|
[4] |
WITTEVEEN P, FERRARI A, LALOUI L. An experimental and constitutive investigation on the chemo-mechanical behaviour of a clay[J]. Géotechnique, 2013, 63(3): 244-255. doi: 10.1680/geot.SIP13.P.027
|
[5] |
张彤炜, 邓永锋, 刘松玉, 等. 渗透吸力对重塑黏土的压缩和渗透特性影响的试验研究[J]. 岩土工程学报, 2014, 36(12): 2260-2266. doi: 10.11779/CJGE201412014
ZHANG Tong-wei, DENG Yong-feng, LIU Song-yu, et al. Experimental investigation of osmotic suction effect on hydro-mechanical behaviour of remolded clay[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2260-2266. (in Chinese) doi: 10.11779/CJGE201412014
|
[6] |
颜荣涛, 纪文栋, 陈星欣, 等. 盐溶液饱和黏土的力学行为模拟[J]. 岩土力学, 2018, 39(2): 546-552. doi: 10.16285/j.rsm.2017.0809
YAN Rong-tao, JI Wen-dong, CHEN Xing-xin, et al. Modeling mechanical behaviors of clayey soil saturated by salt solution[J]. Rock and Soil Mechanics, 2018, 39(2): 546-552. (in Chinese) doi: 10.16285/j.rsm.2017.0809
|
[7] |
LORET B, HUECKEL T, GAJO A. Chemo-mechanical coupling in saturated porous media: elastic-plastic behaviour of homoionic expansive clays[J]. International Journal of Solids & Structures, 2002, 39(10): 2773-2806.
|
[8] |
MATA C, ROMERO E, LEDESMA A. Hydro-chemical effects on water retention in bentonite-sand mixtures[C]//Proceedings of the 3rd International Conference on Unsaturated Soil. Recife, Brazil: Swets & Zeitlinger, 2002: 283-288.
|
[9] |
RAO M S, SHIVANANDA P. Role of osmotic suction in swelling of salt-amended clays[J]. Canadian Geotechnical Journal, 2005, 42(1): 307-315. doi: 10.1139/t04-086
|
[10] |
ARIFIN Y F, SCHANZ T. Osmotic suction of highly plastic clays[J]. Acta Geotechnica, 2009, 4(3): 177-191. doi: 10.1007/s11440-009-0097-0
|
[11] |
GLASSTONE S. Textbook of Physical Chemistry[M]. 2nd ed. New Delhi: Macmillan India, 1974.
|
[12] |
XU Y F, XIANG G S, JIANG H, et al. Role of osmotic suction in volume change of clays in salt solution[J]. Applied Clay Science, 2014, 101: 354-361. doi: 10.1016/j.clay.2014.09.006
|
[13] |
周凤玺, 王立业, 赖远明. 饱和盐渍土的一维蠕变试验与模型研究[J]. 岩土工程学报, 2020, 42(1): 142-149. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001023.htm
ZHOU Feng-xi, WANG Li-ye, LAI Yuan-ming. One-dimensional creep test and model study on saturated saline soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 142-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001023.htm
|
[14] |
王立业, 周凤玺, 秦虎. 饱和盐渍土分数阶蠕变模型及试验研究[J]. 岩土力学, 2020, 41(2): 543-551. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002026.htm
WANG Li-ye, ZHOU Feng-xi, QIN Hu. Fractional creep model and experimental study of saturated saline soil[J]. Rock and Soil Mechanics, 2020, 41(2): 543-551. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002026.htm
|
[15] |
BOLT G H, MILLER R D. Compression studies of illite suspensions1[J]. Soil Science Society of America Journal, 1955, 19(3): 285-288. doi: 10.2136/sssaj1955.03615995001900030010x
|
[16] |
BOLT G H. Physico-chemical analysis of the compressibility of pure clays[J]. Géotechnique, 1956, 6(2): 86-93. doi: 10.1680/geot.1956.6.2.86
|
[17] |
MESRI G, OLSON R E. Consolidation characteristics of montmorillonite[J]. Géotechnique, 1971, 21(21): 341-352.
|
[18] |
SRIDHARAN A, RAO G V. Mechanisms controlling volume change of saturated clays and the role of the effective stress concept[J]. Géotechnique, 1973, 23(3): 359-382. doi: 10.1680/geot.1973.23.3.359
|
[19] |
SRIDHARAN A, RAO G V. Shear strength behaviour of saturated clays and the role of the effective stress concept[J]. Géotechnique, 1979, 29(2): 177-193. doi: 10.1680/geot.1979.29.2.177
|
[20] |
MARINE I W, FRITZ S J. Osmotic model to explain anomalous hydraulic heads[J]. Water Resources Research, 1981, 17(1): 73-82. doi: 10.1029/WR017i001p00073
|
[21] |
FRITZ S J. Ideality of clay membranes in osmotic processes: a review[J]. Clays and Clay Minerals, 1986, 34(2): 214-223. doi: 10.1346/CCMN.1986.0340212
|
[22] |
GAJO A, LORET B, HUECKEL T. Electro-chemo- mechanical couplings in saturated porous media: Elastic-plastic behaviour of heteroionic expansive clays[J]. International Journal of Solids and Structures, 2002, 39(16): 4327-4362. doi: 10.1016/S0020-7683(02)00231-7
|
[23] |
GAJO A, LORET B. Finite element simulations of chemo-mechanical coupling in elastic–plastic homoionic expansive clays[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(31/32): 3489-3530.
|
[24] |
GUIMARAES L D N, GENS A, OLIVELLA S. Coupled thermo-hydro-mechanical and chemical analysis of expansive clay subjected to heating and hydration[J]. Transport in Porous Media, 2007, 66(3): 341-372. doi: 10.1007/s11242-006-0014-z
|
[25] |
WEI C F. A theoretical framework for modeling the chemomechanical behavior of unsaturated soils[J]. Vadose Zone Journal, 2014, 13(9): 1-21. doi: 10.2136/vzj2014.04.0036
|
[26] |
FREDLUND , RAHARDJO D G. Soil Mechanics for Unsaturated Soils[M]. New York: Wiley, 1993.
|
[27] |
TRIPATHY S, LEONG E C, RAHARDJO H. Total suction measurement of unsaturated soils with a device using the chilled-mirror dew-point technique[J]. Géotechnique, 2003, 53(2): 173-182. doi: 10.1680/geot.2003.53.2.173
|
[28] |
PERONI N, TARANTINO A. Measurement of Osmotic Suction Using the Squeezing Technique[M]//Unsaturated Soils: Experimental Studies, 2005.
|
[29] |
LEONG E C, TRIPATHY S, RAHARDJO H. Total suction measurement of unsaturated soils with a device using the chilled-mirror dew-point technique[J]. Géotechnique, 2003, 53(2): 173-182. doi: 10.1680/geot.2003.53.2.173
|
[30] |
CARDOSO R, ROMERO E, LIMA A, et al. A Comparative Study of Soil Suction Measurement Using Two Different High-Range Psychrometers[M]. Heidelberg: Springer Berlin, 2007.
|
[31] |
USDA. Agriculture handbook 60, Diagenesis and Improvement of Saline and Alkali Soils[M]. California: United States Salinity Laboratory, 1954.
|
[32] |
RAO S, REVANASIDDAPPA K. Role of soil structure and matric suction in collapse of a compacted clay soil[J]. Geotechnical Testing Journal, 2003, 26(1): 1-9.
|
[33] |
RAO S M, THYAGARAJ T. Swell–compression behaviour of compacted clays under chemical gradients[J]. Canadian Geotechnical Journal, 2007, 44(5): 520-532. doi: 10.1139/t07-002
|
[34] |
USDA. Agricultural Handbook 60, Diagnosis and Improvement of Saline and Alkali Soils[M]. Washington D C: United States Salinity Laboratory, 1950.
|
[35] |
IYER B, HODDINOTT K B, LAMB R O. Pore Water Extraction-Comparison of Saturation Extract and High- Pressure Squeezing[M]. Philadelphia: American Society for Testing and Materials, 1990: 159-170.
|
[36] |
SACCHI E, MICHELOT J L, PITSCH H, et al. Extraction of water and solutes from argillaceous rocks for geochemical characterisation: Methods, processes and current understanding[J]. Hydrogeology Journal, 2001, 9(1): 17-33. doi: 10.1007/s100400000113
|
[37] |
MANHEIM F T. A Hydraulic Squeezer for Obtaining Interstitial Water from Consolidated and Unconsolidated Sediments[R]. Virginia: US Geological Survey, 1966: 256-261.
|
[38] |
ENGELHARDT W V, GAIDA K H. Concentration changes of pore solutions during compaction of clay sediments[J]. Journal of Sedimentary Research, 1963, 33(4): 919-930. doi: 10.1306/74D70F74-2B21-11D7-8648000102C1865D
|
[39] |
MARIANO A D, AIRÒ F C, VALORE C. Retention curves and 1-D behaviour of a compacted tectonised unsaturated clay[C]//International Workshop on Unsaturated Soils, 2000, Rotterdam.
|
[40] |
KRAHN J, FREDLUND D G. On total, matric and osmotic suction[J]. Soil Science, 1972, 114(5): 339-348. doi: 10.1097/00010694-197211000-00003
|
[41] |
RIDLEY A M, WRAY W K. Suction measurement: a review of current theory and practices[C]//International Conference on Unsaturated Soils/UNSAT 95, 1996, Paris: 1293-1322.
|
[42] |
van't HOFF J H. The role of osmotic pressure in the analogy between solutions and gases[J]. Zeitschrift Für Physikalische Chemie, 1887, 1(1): 481-508. (in Germany)
|
[43] |
MEYER L. About the essence of osmotic printing[J]. Zeitschrift Für Physikalische Chemie, 1889, 5(1): 174-176. (in Germany)
|
[44] |
LAAR van J J. The thermodynamics of electrolytic dissociation[J]. Zeitschrift für Physikalische Chemie, 1982, 10U(1): 242-254. (in Germany)
|
[45] |
DAO V N T, MORRIS P H, DUX P F. On equations for the total suction and its matric and osmotic components[J]. Cement and Concrete Research, 2008, 38(11): 1302-1305. doi: 10.1016/j.cemconres.2008.06.004
|
[46] |
T M L . Osmotic pressure or osmotic suction?[J]. Nature, 1916, 97(2423): 122-123.
|
[47] |
GRASLEY Z C, RAJAGOPAL K R. Revisiting total, matric, and osmotic suction in partially saturated geomaterials[J]. Zeitschrift für angewandte Mathematik und Physik, 2012, 63(2): 373-394. doi: 10.1007/s00033-011-0168-6
|
[48] |
SPOSITO G. The Thermodynamics of Soil Solution[M]. Oxford: Oxford University Press, 1981.
|
[49] |
SUN D A, CUI H, SUN W. Swelling of compacted sand–bentonite mixtures[J]. Applied Clay Science, 2009, 43(3/4): 485-492.
|
[50] |
LANG A R G. Osmotic coefficients and water potential of sodium chloride solutions from 0 to 40 degrees C[J]. Australian Journal of Chemistry, 1967, 20(9): 2017-2023. doi: 10.1071/CH9672017
|
[51] |
PITZER K S. Thermodynamics of electrolytes: I theoretical basis and general equations[J]. The Journal of Physical Chemistry B, 1973, 77(2): 268-277. doi: 10.1021/j100621a026
|
[52] |
PITZER K S, MAYORGA G. Thermodynamics of electrolytes: II activity and osmotic coefficients for strong electrolytes with one or both ions univalent[J]. The Journal of Physical Chemistry, 1973, 77(19): 2300-2308. doi: 10.1021/j100638a009
|
[53] |
BARBOUR S L, FREDLUND D G. Mechanisms of osmotic flow and volume change in clay soils[J]. Canadian Geotechnical Journal, 1989, 26(4): 551-562. doi: 10.1139/t89-068
|
[54] |
KIM H T, FREDERICK W J. Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25℃: 1 Single salt parameters[J]. Journal of Chemical & Engineering Data, 1988, 33(2): 177-184.
|
[55] |
蒋明镜. 现代土力学研究的新视野——宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
JIANG Ming-jing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
|
[56] |
WYLLIE M R J, ROSE W. Some theoretical considerations related to the quantitative evaluation of the physical characteristics of reservoir rock from electrical log data[J]. Journal of Petroleum Technology, 1950, 2(4): 105-118. doi: 10.2118/950105-G
|
[57] |
ARCHIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Transactions of the AIME, 146(1): 54-62. doi: 10.2118/942054-G
|
[58] |
GHANBARIAN B, HUNT A G, EWING R P, et al. Tortuosity in porous media: a critical review[J]. Soil Science Society of America Journal, 2013, 77(5): 1461-1477.
|
[59] |
COLEMAN S W, VASSILICOS J C. Transport properties of saturated and unsaturated porous fractal materials[J]. Physical Review Letters, 2008, 100(3): 035504.
|
[60] |
WEI W, CAI J C, HU X Y, et al. An electrical conductivity model for fractal porous media[J]. Geophysical Research Letters, 2015, 42(12): 4833-4840.
|
[61] |
MENG H, SHI Q, LIU T Y, et al. The percolation properties of electrical conductivity and permeability for fractal porous media[J]. Energies, 2019, 12(6): 1-15.
|
[62] |
BATES S J. Osmotic pressure and concentration in solutions of electrolytes, and the calculation of the degree of ionization[J]. Journal of the American Chemical Society, 2002, 37(6): 1421-1445.
|
[1] | ZHAO Yong, YANG Tian-hong, WANG Shu-hong, JIA Peng. Damage analysis method for mining rock mass based on microseismic-derived fractures and its engineering application[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 305-314. DOI: 10.11779/CJGE202202012 |
[2] | TANG Chao, LI Shu-lin, ZHOU Meng-jing, LIU Yin-chi. Stress inversion based on microseismic monitoring and its engineering application[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1730-1738. DOI: 10.11779/CJGE202109019 |
[3] | ZHOU Chun-hua, LI Yun-an, YIN Jian-min, WANG Yang, ZHOU Chao, GUO Xi-feng. Multivariate early warning method for rockbursts based on comprehensive microseismic and electromagnetic radiation monitoring[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 457-466. DOI: 10.11779/CJGE202003007 |
[4] | QIAN Bo, YANG Ying, XU Nu-wen, DAI Feng, ZHOU Jia-wen, FAN Yi-lin, XU Jian. Feedback analysis of rock damage deformation of slope at left bank of Baihetan Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1464-1471. DOI: 10.11779/CJGE201908010 |
[5] | ZHAO Guo-yan, DENG Qing-lin, MA Ju. Recognition of mine microseismic signals based on FSWT time-frequency analysis[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 306-312. DOI: 10.11779/CJGE201502014 |
[6] | YU Qun, TANG Chun-An, LI Lian-chong, LI Hong, CHENG Guan-wen. Nucleation process of rockbursts based on microseismic monitoring of deep-buried tunnels for Jinping Ⅱ Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2315-2322. DOI: 10.11779/CJGE201412021 |
[7] | HU Jing-yun, LI Shu-lin. Optimization of picking mine microseismic P-wave arrival time and its application in reducing error of source locating[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1940-1946. DOI: 10.11779/CJGE201410023 |
[8] | MIAO Xiao-hu, JIANG Fu-xing, WANG Cun-wen, DENG Jian-ming. Mechanism of microseism-inducdrock burst revealed by microseismic monitoring[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 971. |
[9] | LU Caiping, DOU Linming, WU Xingrong, WANG Huiming, QIN Yuhong. Frequency spectrum analysis on microseismic monitoring and signal differentiation of rock material[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 772-775. |
[10] | JIANG Fuxing. Application of microseismic monitoring technology of strata fracturing in underground coal mine[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 147-149. |
1. |
支斌,李树忱,朱颖,田垚,万泽恩. 土压平衡盾构螺旋输送机渣土运移及参数影响. 应用力学学报. 2023(01): 107-115 .
![]() | |
2. |
莫品强,任志文,林玉祥,褚锋,顾瑞海. 基于孔压静探的滨海相软土抗剪强度解译方法研究. 地下空间与工程学报. 2023(S1): 112-123 .
![]() | |
3. |
王钰轲,冯爽,钟燕辉,张蓓. 基于集成学习模型的正常固结土抗剪强度指标预测方法. 岩土工程学报. 2023(S2): 183-188 .
![]() |