• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

有限土体下考虑土拱效应的非极限主动土压力解

徐日庆, 徐叶斌, 程康, 冯苏阳, 申硕

徐日庆, 徐叶斌, 程康, 冯苏阳, 申硕. 有限土体下考虑土拱效应的非极限主动土压力解[J]. 岩土工程学报, 2020, 42(2): 362-371. DOI: 10.11779/CJGE202002018
引用本文: 徐日庆, 徐叶斌, 程康, 冯苏阳, 申硕. 有限土体下考虑土拱效应的非极限主动土压力解[J]. 岩土工程学报, 2020, 42(2): 362-371. DOI: 10.11779/CJGE202002018
XU Ri-qing, XU Ye-bin, CHENG Kang, FENG Su-yang, SHEN Shuo. Method to calculate active earth pressure considering soil arching effect under nonlimit state of clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 362-371. DOI: 10.11779/CJGE202002018
Citation: XU Ri-qing, XU Ye-bin, CHENG Kang, FENG Su-yang, SHEN Shuo. Method to calculate active earth pressure considering soil arching effect under nonlimit state of clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 362-371. DOI: 10.11779/CJGE202002018

有限土体下考虑土拱效应的非极限主动土压力解  English Version

基金项目: 

国家自然科学基金项目 41672264

浙江省重点研发计划项目 2019C03103

中央高校基本科研业务费专项资金项目 2019QNA4041

详细信息
    作者简介:

    徐日庆(1962— ),男,博士后,教授,主要从事岩土工程方面的教学和科研工作。E-mail:xurq@zju.edu.cn

  • 中图分类号: TU472

Method to calculate active earth pressure considering soil arching effect under nonlimit state of clay

  • 摘要: 以挡土墙后有限范围黏土为研究对象,考虑非极限状态下的土拱效应,并采用塑性上限理论求得的破裂面夹角和多滑裂面假设得到的侧向土压力系数变化规律,推导了有限土体的主动土压力解析式,该公式也可退化为半无限宽度的主动土压力公式。与模型试验相比,所提理论解与试验值取得了较好的一致性,证明了解析解的合理性。进一步参数分析表明:破裂面夹角随土体内摩擦角呈线性增长;随有限土体宽高比减小而小幅增加;与地下室挡墙外摩擦角和内摩擦角的比值呈正相关,而与基坑挡土墙外摩擦角和内摩擦角的比值呈负相关;在大于或略小于时,破裂面夹角随位移比单调增加,而当远小于时,破裂面夹角随增加先增大后减小。主动土压力随减小而单调降低,其分布由子弹形逐渐转变为钟形;主动土压力值与都呈负相关,且随的增加非线性逐渐增强。
    Abstract: By taking the limited range of clay behind the retaining wall as the research object, considering soil arching effect under non-limit state, and adopting the angle of the fracture surface obtained by the plastic upper limit theory and the variation law of lateral earth pressure coefficient obtained by hypothesis of multiple slip surfaces, an analytical formula for the active earth pressure of finite soil is derived. The expression can also be reduced to the formula for the active earth pressure with half-infinite width. Compared with that of the model test, the proposed theoretical solution is in preferably consistency with the experimental value. So the rationality of the analytical solution is proved. Further parameter analysis shows that the angle of the rupture surface increases linearly with the friction angle of the soil. The angle of the rupture surface increases slightly as the aspect ratio of the limited soil decreases. The angle of the rupture surface and the ratio of the outer friction angle of the basement retaining wall to the inner friction angle are positively correlated. The angle of the rupture surface and the ratio of the outer friction angle of the foundation pit retaining wall to the inner friction angle are negatively correlated. When is greater than or slightly less than , the angle of the rupture surface increases monotonically with the displacement ratio . And when is much smaller than , the angle of the rupture surface increases first and then decreases with the increase of . The active earth pressure decreases monotonously with the reduction of , and its distribution gradually changes from bullet shape to bell shape. The value of active earth pressure is negatively correlated with , and , and the nonlinearity of active earth pressure curve gradually increases with the increase of and .
  • 图  1   挡土墙后有限土体示意图

    Figure  1.   Schematic diagram of finite soil behind retaining wall

    图  2   有限土体下Ⅰ区小主应力轨迹线示意图

    Figure  2.   Schematic diagram of minor principal stress trajectory in rectangular region under finite soil

    图  3   挡土墙后土体应力莫尔圆

    Figure  3.   Mohr circle for stress behind retaining wall

    图  4   有限土体下Ⅱ区小主应力轨迹线示意图

    Figure  4.   Schematic diagram of minor principal stress trajectory in triangular area under finite soil

    图  5   计算模型示意图

    Figure  5.   Schematic diagram of model

    图  6   滑裂体受力分析图

    Figure  6.   Forces acting on sliding soil mass

    图  7   Ⅰ区薄层单元受力分析图

    Figure  7.   Forces acting on thin layer element of zone Ⅰ

    图  8   开裂区土体受力分析图

    Figure  8.   Stresses acting on soil in cracking zone

    图  9   Ⅱ区薄层单元受力分析图

    Figure  9.   Forces acting on thin layer element of zoneⅡ

    图  10   开裂区土体受力分析图

    Figure  10.   Stresses acting on soil in cracking zone

    图  11   黏性土主动土压力理论解与试验值的对比

    Figure  11.   Comparison between theoretical and experimental values of active earth pressure for cohesive soil

    图  12   砂性土主动土压力理论解与试验值的对比

    Figure  12.   Comparison between theoretical and experimental values of active earth pressure for sandy soil

    图  13   φB/H对破裂面夹角的影响

    Figure  13.   Effects of φ and B/H on angle of fracture surface

    图  14    δ/φη对破裂面夹角的影响

    Figure  14.   Effects of δ/φ and η on angle of fracture surface

    图  15   B/H对主动土压力的影响

    Figure  15.   Effects of B/H on active earth pressure

    图  16   δ/φα/φ对主动土压力的影响

    Figure  16.   Effects of δ/φ and α/φ on active earth pressure

    图  17   内摩擦角φ对主动土压力的影响

    Figure  17.   Effects of φ on active earth pressure

  • [1] 高印立. 极限分析法计算有限范围土体土压力[J]. 建筑结构, 2001, 31(8): 66-68. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG200108018.htm

    GAO Yin-li. Calculation of finite earth pressure by limit analysis[J]. Building Structures, 2001, 31(8): 66-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG200108018.htm

    [2]

    TAKE W A, VALSANGKAR A J. Earth pressures on unyielding retaining walls of narrow backfill width[J]. Canadian Geotechnical Journal, 2001, 38: 1220-1230. doi: 10.1139/t01-063

    [3] 杨明辉, 戴夏斌, 赵明华, 等. 墙后有限宽度无黏性土主动土压力试验研究[J]. 岩土工程学报, 2016, 38(1): 131-137. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201601016.htm

    YANG Ming-hui, DAI Xia-bin, ZHAO Ming-hua, et al. Experimental study on active earth pressure of cohesionless soil with limited width behind retaining wall[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 723-728. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201601016.htm

    [4] 王闫超, 晏鄂川, 陆文博, 等. 无黏性有限土体主动土压力解析解[J]. 岩土力学, 2016, 37(9): 2513-2520. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201609011.htm

    WANG Yan-chao, YAN E-chuan, LU Wen-bo, et al. Analytical solution of active earth pressure for limited cohesionless soils[J]. Rock and Soil Mechanics, 2016, 37(9): 2513-2520. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201609011.htm

    [5] 赵琦, 朱建明. 临近地下室外墙影响下的考虑土拱效应的挡土墙主动土压力研究[J]. 岩土力学, 2014, 35(3): 723-728. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403019.htm

    ZHAO Qi, ZHU Jian-ming. Research on active earth pressure behind retaining wall adjacent to existing basements exterior wall considering soil arching effects[J]. Rock and Soil Mechanics, 2013, 35(3): 723-728. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403019.htm

    [6] 应宏伟, 黄东, 谢新宇. 考虑邻近地下室外墙侧压力影响的平动模式挡土墙主动土压力研究[J]. 岩石力学与工程学报, 2011, 30(增刊1): 2970-2978. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1050.htm

    YING Hong-wei, HUANG Dong, XIE Xin-yu. Study of active earth pressure on retaining wall subject to translation mode considering lateral pressure on adjacent existing basement exterior wall[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 2970-2978. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1050.htm

    [7] 应宏伟, 朱伟, 黄东, 等. 狭窄黏性填土刚性挡墙主动土压力研究[J]. 岩土工程学报, 2012, 34(增刊1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2012S1006.htm

    YING Hong-wei, ZHU Wei, HUANG Dong, et al. Active earth pressures against rigid retaining walls with narrow cohesive backfill[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(S1): 13-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2012S1006.htm

    [8] 应宏伟, 黄东. 临近既有地下室平动模式挡土墙主动土压力研究[J]. 固体力学学报, 2011, 32(增刊1): 356-360. https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX2011S1061.htm

    YING Hong-wei, HUANG Dong. Study on active earth pressures on translation retaining walls adjacent to existing basements[J]. Acta Mechanica Solida Sinica, 2011, 32(S1): 356-360. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX2011S1061.htm

    [9] 卢坤林, 杨扬. 非极限主动土压力计算方法初探[J]. 岩土力学, 2010, 31(2): 615-619. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201002055.htm

    LU Kun-lin, YANG Yang. Preliminary study of earth pressure under non-limit state[J]. Rock and Soil Mechanics, 2010, 31(2): 615-619. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201002055.htm

    [10] 胡俊强, 张永兴, 陈林, 等. 非极限状态挡土墙主动土压力研究[J]. 岩土工程学报, 2013, 35(2): 381-387. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302025.htm

    HU Jun-qiang, ZHANG Yong-xing, CHEN Lin, et al. Active earth pressure on retaining wall under non-limit state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 381-387. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302025.htm

    [11] 徐日庆, 廖斌, 吴渐, 等. 黏性土的非极限主动土压力计算方法研究[J]. 岩土力学, 2013, 34(1): 148-154. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301022.htm

    XU Ri-qing, LIAO Bin, WU Jian, et al. Computational method for active earth pressure of cohesive soil under nonlimit state[J]. Rock and Soil Mechanics, 2013, 34(1): 148-154. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301022.htm

    [12]

    TERZAGHI K. Theoretical Soil Mechanics[M]. New York: John Wiley and Sons, 1943: 66-76.

    [13] 涂兵雄, 贾金青. 考虑土拱效应的黏性填土挡土墙主动土压力研究[J]. 岩石力学与工程学报, 2012, 31(5): 1064-1070. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201205027.htm

    TU Bing-xiong, JIA Jin-qing. Research on active earth pressure behind rigid retaining wall from clayey backfill considering soil arching effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(5): 1064-1070. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201205027.htm

    [14]

    FEDERICO A, ELIA G, GERMANO V. A short note on the earth pressure and mobilized angle of internal friction in one-dimensional compression of soils[J]. Journal of Geo- Engineering, 2008, 3(1): 41-46.

    [15] 刘建航, 侯学渊. 基坑工程手册[M]. 北京: 中国建筑工业出版社, 1997.

    LIU Jian-hang, HOU Xue-yuan. Foundation Pit Engineering Manual[M]. Beijing: China Architecture and Building Press, 1977. (in Chinese)

    [16]

    FANG Y S, ISHIBASHI I. Static earth pressures with various wall movements[J]. Journal of Geotechnical Engineering, 1986, 112(3): 317-333.

    [17]

    MATSUZAWA H, HAZARIKA H. Analyses of active earth pressure against rigid retaining walls subjected to different modes of movement[J]. Soils and Foundations, 1996, 36(3): 51-65.

    [18]

    CHANG M F. Lateral earth pressures behind rotating walls[J]. Canadian Geotechnical Journal, 1997, 34(2): 498-509.

    [19] 赵恒惠. 挡土墙后黏性填土的土压力计算[J]. 岩土工程学报, 1983, 5(1): 134-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200801021.htm

    ZHAO Heng-hui. A calculation of earth pressure of cohesive fill behind retaining wall[J]. Chinese Journal of Geotechnical Engineering, 1983, 5(1): 134-146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200801021.htm

    [20] 周应英, 任美龙. 刚性挡土墙主动土压力的试验研究[J]. 岩土工程学报, 1990, 12(2): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199002002.htm

    ZHOU Ying-ying, REN Mei-long. An experimental study on active earth pressure behind rigid retaining wall[J]. Chinese Journal of Geotechnical Engineering, 1990, 12(2): 19-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199002002.htm

  • 期刊类型引用(1)

    1. 许建堂. 不同因素对堆石坝地基防渗墙应力应变影响分析. 水利科技与经济. 2023(06): 11-15 . 百度学术

    其他类型引用(0)

图(17)
计量
  • 文章访问数:  392
  • HTML全文浏览量:  33
  • PDF下载量:  225
  • 被引次数: 1
出版历程
  • 收稿日期:  2019-02-20
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-01-31

目录

    /

    返回文章
    返回