• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

适用于弹黏塑性本构模型的修正切面算法

李舰, 蔡国庆, 尹振宇

李舰, 蔡国庆, 尹振宇. 适用于弹黏塑性本构模型的修正切面算法[J]. 岩土工程学报, 2020, 42(2): 253-259. DOI: 10.11779/CJGE202002006
引用本文: 李舰, 蔡国庆, 尹振宇. 适用于弹黏塑性本构模型的修正切面算法[J]. 岩土工程学报, 2020, 42(2): 253-259. DOI: 10.11779/CJGE202002006
LI Jian, CAI Guo-qing, YIN Zhen-yu. Modified cutting-plane integration scheme for elasto-viscoplastic models[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 253-259. DOI: 10.11779/CJGE202002006
Citation: LI Jian, CAI Guo-qing, YIN Zhen-yu. Modified cutting-plane integration scheme for elasto-viscoplastic models[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 253-259. DOI: 10.11779/CJGE202002006

适用于弹黏塑性本构模型的修正切面算法  English Version

基金项目: 

中央高校基本科研业务费专项资金项目 2019JBM083

详细信息
    作者简介:

    李舰(1985— ),男,博士,讲师,主要从事土的本构模型及其数值计算方面的研究工作。E-mail:jianli@bjtu.edu.cn

    通讯作者:

    尹振宇, E-mail:zhenyu.yin@polyu.edu.hk

  • 中图分类号: TU43

Modified cutting-plane integration scheme for elasto-viscoplastic models

  • 摘要: 针对弹黏塑性本构模型将原始切面算法进行了修正。该弹黏塑性本构模型结合了修正剑桥模型和过应力理论。首先对弹黏塑性本构模型的应力-应变关系式进行了调整,基于过应力理论给出了动态加载面硬化参数的演化方程。其次,利用切面算法对整理后应力-应变关系式进行了数值实现。在弹性试算过程中,该算法假设黏塑性应变率为常数,以此确保时间增量引起的当前应力点与动态加载面间的偏离。在塑性修正过程中,对动态加载面函数进行泰勒级数展开,依此获得黏塑性应变率增量。再次,提出了一种自动分步方法,有效地稳定了大应变步情况下算法的计算精度和收敛性。最后,对变应变率的固结试验和三轴剪切不排水试验进行了模拟,分析了修正切面算法的计算能力。
    Abstract: The elasto-viscoplastic model can be regarded as a combination of the modified Cam-clay model and the overstress theory. Firstly, the stress-strain formulas for the model are rearranged, in which an evolution equation for the hardening parameter of dynamic loading surface is deduced based on the overstress theory. Secondly, the rearranged stress-strain formulas are numerically implemented by the cutting-plane integration scheme. In an elastic prediction process, the viscoplastic strain rate is assumed to be constant, which guarantees the deviation of the current stress state from dynamic loading surface due to time increments. In a plastic corrector process, a Taylor series approximation of the dynamic loading function is used to obtain the increment of viscoplastic multiplier rate. Thirdly, an adaptive substepping method is proposed to maintain the accuracy and convergence of the proposed algorithm at a large loading step. Finally, the performances of the modified cutting-plane algorithm are analyzed by the calculated results of step-changed oedometer tests and undrained triaxial tests.
  • 图  1   EVP-MCC模型的动态加载面和参考面

    Figure  1.   Dynamic loading surface and reference surface of EVP-MCC model

    图  2   变应变率固结试验计算结果

    Figure  2.   Calculated results of step-changed oedometer tests

    图  3   3种算法变应变率固结试验

    Figure  3.   Comparison of calculation errors and total iteration number of three kinds of algorithms for step-changed oedometer tests

    图  4   变应变率三轴剪切不排水试验

    Figure  4.   Calculated results of deviatoric stress and pore-water pressure for step-changed undrained triaxial tests

    图  5   两种算法变应变率三轴试验

    Figure  5.   Comparison of calculation errors and total iteration number of two kinds of algorithms for step-changed undrained triaxial tests

    表  1   Saint-Herblain黏土模型参数和状态变量初值

    Table  1   Values of parameters and state constants of Saint-Herblain clay

    pm0r/kPae0μκλMCαae
    392.260.20.0380.481.20.034
    下载: 导出CSV
  • [1]

    YIN Z Y, ZHU Q Y, YIN J H, et al. Stress relaxation coefficient and formulation for soft soils[J]. Géotechnique Letters, 2014, 4(1): 45-51. doi: 10.1680/geolett.13.00070

    [2]

    YAO Y P, KONG L M, ZHOU A N, et al. Time-dependent unified hardening model: three-dimensional elastoviscoplastic constitutive model for clays[J]. Journal of Engineering Mechanics, 2015, 141(6): 0414162.

    [3] 尹振宇, 朱启银, 朱俊高. 软黏土蠕变特性试验研究:回顾与发展[J]. 岩土力学, 2013, 24(增刊2): 1-17.

    YIN Zhen-yu, ZHU Qi-yin, ZHU Jun-gao. Experimental investigation on creep behavior of soft clays: Review and development[J]. Rock and Soil Mechanics, 2013, 24(S2): 1-17. (in Chinese)

    [4] 韩剑, 姚仰平, 尹振宇. 超固结度对超固结饱和黏土不排水蠕变特性的影响研究[J]. 岩土工程学报, 2018, 40(3): 426-430. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803007.htm

    HAN Jian, YAO Yang-ping, YIN Zhen-yu. Influences of overconsolidation ratio on undrained creep behavior of overconsolidated saturated clay[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 426-430. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803007.htm

    [5]

    YIN Z Y, CHANG C S, KARSTUNEN M, et al. An anisotropic elastic-viscoplastic model for soft clays[J]. International Journal of Solids and Structures, 2010, 47(5): 665-677. doi: 10.1016/j.ijsolstr.2009.11.004

    [6]

    YIN Z Y, KARSTUNEN M, CHANG C S, et al. Modeling time-dependent behavior of soft sensitive clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(11): 1103-1113. doi: 10.1061/(ASCE)GT.1943-5606.0000527

    [7] 殷建华. 等效时间和岩土材料的弹黏塑性模型[J]. 岩石力学与工程学报, 1999, 18(2): 124-128.

    YIN Jian-hua. Equivalent time and elastic visco-plastic modelling of geomaterials[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(2): 124-128. (in Chinese)

    [8] 王立忠, 但汉波. K0固结软黏土的弹黏塑性本构模型[J]. 岩土工程学报, 2007, 29(9): 1344-1354. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200709011.htm

    WANG Li-zhong, DAN Han-bo. Elastic viscoplastic constitutive model for K0-consolidated soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1344-1354. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200709011.htm

    [9] 李兴照, 黄茂松, 王录民. 流变性软黏土的弹黏塑性边界面本构模型[J]. 岩石力学与工程学报, 2007, 26(7): 1393-1401. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200707012.htm

    LI Xing-zhao, HUANG Mao-song, WANG Lu-min. Bounding surface elasto-viscoplastic constitutive model for rheological behaviors of soft clays[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(7): 1393-1401. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200707012.htm

    [10] 尹振宇. 天然软黏土的弹黏塑性本构模型:进展及发展[J]. 岩土工程学报, 2011, 33(9): 1357-1369. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201109011.htm

    YIN Zhen-yu, Elastic viscoplastic models for natural soft clay: review and development[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1357-1369. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201109011.htm

    [11] 孔令明, 罗汀, 姚仰平. 率相关本构模型的临界状态描述[J]. 岩土力学, 2015, 36(9): 2442-2450. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509003.htm

    KONG Ling-ming, LUO Ting, YAO Yang-ping. Description of critical state for rate-dependent constitutive models[J]. Rock and Soil Mechanics, 2015, 36(9): 2442-2450. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509003.htm

    [12]

    ORTIZ M, SIMO J C. An analysis of a new class of integration algorithms for elastoplastic constitutive relations[J]. International Journal for Numerical Methods in Engineering, 1986, 23(3): 353-366.

    [13]

    PERZYNA P. Fundamental problems in viscoplasticity[J]. Advances in Applied Mechanics, 1966, 9: 243-377.

    [14]

    KATONA M G. Evaluation of viscoplastic cap model[J]. Journal of Geotechnical Engineering, 1984, 110(8): 1106-1125.

    [15]

    BORJA R I. Cam-clay plasticity: part II implicit integration of constitutive equation based on a nonlinear elastic stress predictor[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 88: 225-240.

    [16]

    STOLLE D F E, VERMEER P A, BONNIER P G. Time integration of a constitutive law for soft clays[J]. Communications in Numerical Methods in Engineering, 1999, 15(8): 603-609.

    [17]

    HIGGINS W, CHAKRABORTY T, BASU D. A high strain-rate constitutive model for sand and its application in finite-element analysis of tunnels subjected to blast[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(15): 2590-2610.

    [18]

    YIN Z Y, LI J, JIN Y F, et al. Estimation of robustness of time integration algorithms for elasto-viscoplastic modeling of soils[J]. International Journal of Geomechanics, 2019, 19(2): 04018197.

    [19]

    SHENG D, SLOAN S W, GENS A, et al. Finite element formulation and algorithms for unsaturated soils: part I theory[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27(9): 745-765.

    [20]

    WANG W, DATCHEVA M, SCHANZ T, et al. A sub-stepping approach for elastoplasticity with rotational hardening[J]. Computational Mechanics, 2006, 37(3): 266-278.

    [21]

    SLOAN S W. Substepping schemes for the numerical integration of elastoplastic stress-strain relations[J]. International Journal for Numerical Methods in Engineering, 1987, 24(5): 893-911.

  • 期刊类型引用(7)

    1. 黄波林,殷跃平,李仁江,蒋树,秦臻,张鹏,闫国强. 滑坡涌浪综合防控工程措施研究进展与挑战. 工程地质学报. 2025(01): 159-170 . 百度学术
    2. 刘红波,于磊,陈志华,陈再捷,庞富刚. 全钢集成式附着升降脚手架冲击性能研究. 施工技术(中英文). 2022(22): 72-79 . 百度学术
    3. 王文沛,殷跃平,胡卸文,李滨,刘明学,祁小博. 碎屑流冲击下桩梁组合结构拦挡效果及受力特征研究. 地质力学学报. 2022(06): 1081-1089 . 百度学术
    4. 范定坚,任曼妮. 约束空心混凝土柱抗侧向冲击动力性能. 辽宁工程技术大学学报(自然科学版). 2021(03): 214-219 . 百度学术
    5. 陈伟,谢建斌,赵一锦,孙孝海,叶海涵,林煌超. 饱和沙土中高频液压振动沉桩敏感性因素分析. 哈尔滨商业大学学报(自然科学版). 2020(02): 214-218 . 百度学术
    6. 王亚月. 钢砼叉桩动力响应模拟分析探究. 水利规划与设计. 2020(07): 102-108 . 百度学术
    7. 任根立,王秀丽. 泥石流块石冲击下钢绞线网组合结构的动力响应模拟研究. 安全与环境工程. 2019(05): 85-93 . 百度学术

    其他类型引用(6)

图(5)  /  表(1)
计量
  • 文章访问数:  378
  • HTML全文浏览量:  28
  • PDF下载量:  191
  • 被引次数: 13
出版历程
  • 收稿日期:  2019-07-06
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-01-31

目录

    /

    返回文章
    返回