Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

板桩结构土压力理论的创新发展

蔡正银

蔡正银. 板桩结构土压力理论的创新发展[J]. 岩土工程学报, 2020, 42(2): 201-220. DOI: 10.11779/CJGE202002001
引用本文: 蔡正银. 板桩结构土压力理论的创新发展[J]. 岩土工程学报, 2020, 42(2): 201-220. DOI: 10.11779/CJGE202002001
CAI Zheng-yin. Innovation and development of earth pressure theories for sheet-pile structures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 201-220. DOI: 10.11779/CJGE202002001
Citation: CAI Zheng-yin. Innovation and development of earth pressure theories for sheet-pile structures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 201-220. DOI: 10.11779/CJGE202002001

板桩结构土压力理论的创新发展  English Version

详细信息
    作者简介:

    蔡正银(1965— ),男,二级教授,博士生导师,无党派人士,江苏省第10届、11届、12届政协委员,从事土的基本性质与土工测试、土的本构理论、土工离心模拟技术方面的研究工作。香港科技大学岩土工程博士毕业,德国柏林工业大学博士后出站,现任南京水利科学研究院岩土工程研究所所长。主要学术兼职包括:《岩土工程学报》主编,中国土木工程学会理事,中国水利学会理事,中国水利学会岩土力学专业委员会常务副主任兼秘书长,中国土木工程学会土力学与岩土工程分会土工测试专委会主任,中国水利学会岩土力学专委会土工测试专门委员会主任,国际土力学与岩土工程学会土工物理模拟技术委员会(ISSMGE TC104)理事,水利部土石坝破坏机理与防控技术重点试验室副主任。主要研究方向为土工测试、土工数值仿真技术和离心模拟技术。先后主持完成了80多项科研项目,是国家重点研发计划项目“高寒区长距离供水工程能力提升与安全保障技术”首席科学家,国家863计划“现代交通基础设施建设和养护技术”项目召集人和“20万吨级深水板桩码头关键技术”课题负责人,水利重大专项“咸寒区灌渠冻害评估预报与处治技术”项目负责人,国家自然科学基金“粗颗粒土剪胀理论与本构模型”和“遮帘式板桩结构的挡土机理”项目负责人。获国家和省部级科技奖16项,其中国家科技进步二等奖1项(排名第一),省部级科技进步特等奖4项、一等奖7项(五项排名第一)。获国家发明专利36项,实用新型专利10项。发表学术论文160余篇,主、参编著作8部。主编国家标准2部,主编水利、交通行业标准各1部,主编水利和港口工程团体标准4部。获全国优秀科技工作者称号,为全国水利系统先进工作者,享受国务院政府特殊津贴专家,中国航海学会首届科技贡献突出人物,江苏省“333人才工程”中青年领军人才,水利部“5151人才工程”部级人选。E-mail:zycai@nhri.com

  • 中图分类号: TU445

Innovation and development of earth pressure theories for sheet-pile structures

  • 摘要: 对于板桩码头,其主要的荷载为作用于码头前墙上的土压力,该荷载一方面是由于港池开挖引起前墙两侧土压力的不平衡产生,另一方面是由于码头表面荷载作用于地基土,从而增加了前墙陆侧的土压力。板桩码头深水化的关键要求必须解决港池挖深导致的前墙土压力急剧增大问题,“遮帘”和“卸荷”是减少前墙土压力的有效途径,由于设置了遮帘桩和卸承台,使得板桩结构的受力情况更加复杂,涉及的关键科学技术问题是土和结构的相互作用。针对遮帘式和分离卸荷式板桩码头新结构开发过程中的土压力问题,先后研究了土体密度与粒径对静止土压力系数的影响、遮帘式板桩结构的土压力“桶仓压力效应”和“遮帘效应”,以及分离卸荷式板桩结构的土压力“卸荷效应”,为板桩码头新结构的发展奠定了理论基础。
    Abstract: The main loads on a sheet-pile wharf are the earth pressures acting on its front wall. On one hand, they are induced by the imbalance of earth pressures at both sides of the front wall owing to excavation of harbor basin; on the other hand, the surface loads of the wharf acting on the foundation soils further increase the landward earth pressures of the front wall. For the sharply increasing earth pressures on the front wall induced by the excavation depth of harbor basin which is required by deep-water sheet-pile wharves, the "barrier" and "unloading" measures are the effective ways to reduce the earth pressures on the front wall. The presence of barrier piles and relief platform leads to more complex forces acting on the sheet-pile structures, and the key scientific and technical problem concerned is the interaction between the soils and the structures. With regard to the earth pressure problems during the development of novel structures such as barrier and separated unloading sheet-pile wharves, a series of researches are performed to lay the theoretical foundation for the development of the novel structure of deep-water sheet-pile wharf, including influences of soil density and grain size on earth pressures at rest, silo effects and barrier effects of earth pressures on barrier sheet-pile structures, and unloading effects of earth pressures of separated unloading sheet-pile structures.
  • 在当前“双碳目标”背景下,干热岩地热作为前景可期的清洁能源,在国家能源结构调整中作用愈加凸显[1]。目前干热岩开发的基本原理是通过水力压裂等激发技术形成裂隙网络,注入的低温流体经过储层热交换后提升到地面[2],在此过程中高温岩体快速降温[3]。此外,地热能开发过程中井壁围岩与常温钻井液接触,高温岩体同样会发生温度降低过程。因此,研究高温作用后岩石物理力学特性演化规律以及高温作用机制,对深部地热能开发具有重要意义。

    针对高温冷却后岩石力学参数演化规律,国内外学者通过室内试验研究取得了一系列成果。贾蓬等[4]开展了高温花岗岩水冷却后单轴压缩试验,发现高温后花岗岩峰值强度和弹性模量随温度增大而减小。朱振南等[5]对水冷却后花岗岩进行了单轴压缩试验,结果表明花岗岩抗压强度和弹性模量均随着温度的升高呈减小趋势。郤保平等[6]分析了20~600℃温度范围内自然降温和遇水急剧冷却条件下花岗岩单轴抗压强度。邓龙传等[7]测试了自然降温和遇水冷却花岗岩巴西劈裂强度,表明随着温度的升高,遇水冷却花岗岩拉伸强度降幅更大且均低于自然降温试样。朱要亮等[8]通过试验观察到水冷却后花岗岩的强度低于自然降温,弹性模量高于自然降温。此外,学者对不同冷却方式下岩石波速、导热能力和孔隙度演化规律进行了探索[9-11]。断裂韧度作为岩石材料的重要参数之一,反映了岩石抵抗断裂失效的能力[12],然而目前对于不同冷却方式下高温岩石断裂韧度的研究尚不多见。

    通过微观结构图像分析岩石微裂纹演化特征,是探究高温作用机制的常用方法之一。李春等[13]基于高温后花岗岩偏光显微图像,分析了温度升高过程中沿晶微裂纹和穿晶微裂纹变化趋势。平琦等[14]观察了不同温度条件下岩石扫描电镜(SEM)图像,探讨了岩石颗粒尺寸变化与温度之间的关系。Huang等[15]通过光学显微观察,探究了自然降温和遇水冷却花岗岩表面热裂纹分布规律,结果表明水冷却条件下微裂纹数量和尺寸均大于自然降温。Yang等[16]采用CT扫描获得高温后花岗岩微裂纹图像,分析了不同温度后花岗岩试样裂纹分布特征。上述研究主要基于岩石微观图像分析了温度对岩石微观裂纹影响的定性规律,然而高温后岩石微观结构劣化的定量表征还有待进一步探究。随着图像处理技术的发展与应用[17],可通过图像处理获得高温后岩石热裂纹数量、面积等定量信息,以揭示高温及冷却方式对岩石微观结构的作用机制。

    综上所述,不同冷却方式下高温岩石断裂韧度及其与岩石微观结构劣化之间的关系还有待深入研究。因此,本文以花岗岩为试验对象,对不同高温岩样分别进行炉内自然降温和遇水冷却处理,分析不同冷却方式对花岗岩断裂韧度的影响规律。基于高温后花岗岩微观图像,采用图像处理技术分析花岗岩热裂纹演化特征,结合矿物成分X射线洐射(XRD)及含量分析,揭示高温后花岗岩劣化机理。

    试验岩石取自山东省济宁市。考虑到晶粒对岩石热-力耦合特性有明显影响[18],本文选取了两种不同晶粒花岗岩。两组岩石均为细-中晶块状结构花岗岩,相对而言A组岩石晶粒较细,B组岩石晶粒较粗,如图 1所示。结合XRD结果可知,A组花岗岩矿物成分及含量为石英(20.5%)、斜长石(27.8%)、正长石(42.6%)和黑云母(9.1%),B组花岗岩为石英(20.8%)、斜长石(58.5%)、正长石(16.3%)和黑云母(4.4%)。压汞试验结果表明,A组花岗岩孔隙率为0.62%,平均孔径为33 nm;B组花岗岩孔隙率为1.3%,平均孔径为242 nm。

    图  1  不同晶粒花岗岩偏光显微图像
    Figure  1.  Thin-section observation of granites with different grains

    根据岩石断裂韧度测试推荐方法[19],将现场取得的花岗岩加工成半圆盘试样,如图 2所示。半圆盘试样的几何参数为:切槽高度a=11.5 mm,半圆盘直径2R=50 mm,厚度B=25 mm。

    图  2  花岗岩半圆盘试样几何尺寸
    Figure  2.  Geometrical parameters of semicircular bend granite

    加温设备为SGM系列高温炉,最高温度可达1200℃。首先将花岗岩半圆盘试样放入高温炉内,以5℃/min的速率增大至目标温度(分别为200℃,400℃,600℃和800℃)后,试样在炉内恒温2 h。然后,迅速取出一部分岩样置于准备好的蒸馏水中快速冷却,另一部分岩样则留在炉内自然降温至室温。为保证两种冷却方式下的可比性,对遇水冷却岩样干燥以后再进行力学试验。

    花岗岩半圆盘试样三点弯曲试验在中国矿业大学CSS-88020电子万能试验机上进行,如图 3所示。该试验系统轴向最大加载力为20 kN。首先安装好三点弯曲夹具,调节下部两个加载点之间的水平距离为36 mm。将半圆盘试样放置在三点弯曲夹具上,施加初始压力使上部加载点与试样接触。对岩样施加轴向力直至岩样发生破坏,采用位移控制模式,加载速率为0.05 mm/min。试验过程由计算机自动采集时间、位移和力等数据。

    图  3  试验系统及岩石三点弯曲试验
    Figure  3.  Testing system and three-point bedding tests for rock

    图 4给出了高温后花岗岩半圆盘试样荷载-位移曲线。由图 4可见,未经高温处理花岗岩试样三点弯曲下峰后荷载-位移曲线均快速跌落,说明常温下两种花岗岩均呈脆性。然而,当花岗岩经过高温处理后,其荷载-位移曲线与常温条件下有所不同,且变化趋势与温度密切相关。

    图  4  高温后花岗岩试样荷载-位移曲线
    Figure  4.  Load-displacement curves of granite specimens after high-temperature treatment

    当花岗岩经过200℃和400℃温度处理后,不管是自然降温还是遇水冷却A组花岗岩试样的峰后均呈现出延性特征,如图 4(a)(b)所示;然而,自然降温和遇水冷却B组花岗岩试样的峰后依然呈现明显的脆性特征,如图 4(c)(d)所示,体现了不同晶粒结构在抵抗温度诱发岩石力学特性变化所起到的作用程度不同。当花岗岩经过600℃和800℃温度处理后,A组花岗岩和B组花岗岩在不同冷却方式下均出现了较明显的峰前屈服阶段和峰后延性特征,说明当温度达到一定程度后矿物颗粒之间结合力较弱,使得花岗岩由脆性向延性转化,而且相同条件下B组花岗岩的变形更为显著。

    图 5给出了花岗岩试样断裂韧度与温度之间的关系。由图 5(a)可见,未经高温处理A组花岗岩半圆盘试样断裂韧度为1.25 MPa·m1/2。随着温度的升高,A组花岗岩断裂韧度呈减小趋势。与常温条件相比,200℃,400℃,600℃和800℃自然降温A组花岗岩断裂韧度降幅分别为27.7%,38.7%,74.6%和85.7%,遇水冷却试样降幅分别为43.5%,51.4%,82.2%和90.5%。比较可见,相同温度作用下A组花岗岩遇水冷却处理引起的断裂韧度降幅大于自然降温条件,即遇水冷却花岗岩断裂韧度弱于炉内自然降温花岗岩。同时,200℃,400℃,600℃和800℃遇水冷却和自然降温条件下花岗岩断裂韧度降幅差异分别为15.8%,12.7%,7.6%和4.8%,即两种降温方式之间的差异逐渐减小,说明随着温度的升高,由遇水冷却导致的断裂韧度弱化程度呈降低趋势。

    图  5  高温后花岗岩试样断裂韧度
    Figure  5.  Fracture toughnesses of granite specimens after high-temperature treatment

    图 5(b)可见,未经高温处理B组花岗岩断裂韧度为0.81 MPa·m1/2,仅为A组花岗岩的64.8%。与常温条件相比,200℃,400℃,600℃和800℃自然降温B组花岗岩断裂韧度降幅分别为10.6%,29.6%,72.5%和80.9%,遇水冷却试样降幅分别为18.1%,34.2%,76.3%和81.6%,两种冷却方式下降幅差异分别为7.5%,4.6%,3.9%和0.7%。可见,B组花岗岩断裂韧度受温度影响的变化趋势与A组花岗岩相似,但是对温度的敏感程度要略低于A组花岗岩。

    岩石破断面中蕴含丰富的力学信息,通过分析高温后花岗岩半圆盘试样破裂模式以进一步认识高温及冷却方式对花岗岩变形破裂特征的影响。图 6给出了三点弯曲作用下花岗岩半圆盘试样典型破裂模式。在试验过程中观察到,裂纹首先萌生于直切槽尖端,并逐渐向上端加载点方向扩展,最终将岩样劈裂为两大块。花岗岩半圆盘试样的破裂面的总体特征为切槽尖端萌生的向上扩展的裂纹,但是在局部特征上受晶粒随机分布和初始微观裂纹影响呈曲折扩展。为分析温度和冷却方式对花岗岩试样破裂特征的影响,把岩样正面和背面的破裂痕迹描绘出来[20],如图 6(b)所示。

    图  6  高温后花岗岩典型破裂模式及断裂痕迹示意
    Figure  6.  Typical failure patterns of granite specimen after high temperature and schematic traces of fracture

    表 1给出了高温后花岗岩半圆盘试样断裂痕迹。比较可见,在温度相对较低(如200℃)时,三点弯曲作用下花岗岩半圆盘试样的断裂痕迹相对较直,与中心线的距离相对较小;随着温度的升高,花岗岩半圆盘试样的断裂痕迹曲折程度增大,与中心线的距离也有所增大,该现象与液氮冷却花岗岩试样[21]变化趋势相同。根据最小能耗原理,岩石在断裂时,裂纹会沿着最薄弱面向前扩展。在较高温度作用下岩样内部产生热开裂,提高了岩样的非均质性和非连续性[22],宏观裂纹易沿着这些热开裂扩展,因而破裂面更为曲折。然而,在本次试验范围内,冷却方式对断裂痕迹的影响并不明显,可能是因为自然降温和遇水冷却方式下产生的热裂纹数量和尺度虽然有一定差异,但是差异程度有限(将在第3节详细分析),因而冷却方式对宏观裂纹曲折程度的影响难以体现出来。

    表  1  高温后花岗岩试样断裂痕迹
    Table  1.  Traces of fracture of granite after high temperature
    冷却 20 ℃ 200 ℃ 400 ℃ 600 ℃ 800 ℃
    自然/遇水 自然/遇水 自然/遇水 自然/遇水
    A组
    B组
    下载: 导出CSV 
    | 显示表格

    岩石宏观裂纹是由于内部微裂纹不断萌生、扩展和贯通形成的,归根结底是岩石矿物颗粒晶体的破坏,而矿物晶体的破裂主要有3类:沿晶断裂、穿晶断裂以及沿晶穿晶耦合断裂[23]。为分析不同高温及冷却方式下花岗岩试样的断裂机理,对高温后花岗岩破裂面进行了SEM观察。以A组花岗岩试样为例,如图 7所示。

    图  7  高温后A组花岗岩试样破裂面SEM图像
    Figure  7.  SEM images of fracture of group A granite specimens after high temperature

    图 7可见,在常温条件下花岗岩一部分颗粒表面光滑,无明显棱角,即断面颗粒保持较为完整,呈现为沿晶断裂,但是另一部分颗粒表面有明显被切割或撕裂痕迹,呈现为穿晶断裂(图 7(a));而随着温度的升高,400℃作用后花岗岩以沿晶断裂为主,同时能观察到少量裂纹(图 7(b)(c));当温度增大至800℃时,花岗岩的破裂程度明显加剧,而且遇水冷却试样裂纹数量较多(图 7(d)(e))。这主要是因为常温下花岗岩矿物颗粒之间结合密实,以穿晶断裂破坏为主;而高温后花岗岩在加载前已经产生了微破裂,呈现为沿晶断裂为主[24],沿晶断裂所需的能量较小,因此高温后花岗岩断裂韧度降低。

    为比较分析两组花岗岩在不同温度及冷却方式下热裂纹差异,对高温后花岗岩进行扫描电镜观察。图 8给出了高温后花岗岩试样SEM图像,其观察对象为高温后未加载试样。由图 8可见,未经高温处理花岗岩结构致密,在该放大倍率下,两组花岗岩中均难以观察到明显的微观裂纹。当A组花岗岩经过200℃作用并自然降温后,可观察到一条细长裂纹;当温度为400℃时,能够观察到3条不规则裂纹;当温度增大至600℃时,裂纹数量明显增多,裂纹之间交汇贯通,形成裂隙网络;当温度继续增大至800℃时,岩样中不仅裂纹数量增加了,而且裂纹宽度也明显变大,如图 8(a)所示。与自然降温相比,遇水冷却花岗岩试样在相同温度条件下裂纹数量较多,裂纹宽度较大,如图 8(b)所示。B组花岗岩中裂纹分布规律与A组花岗岩类似,整体表现为随着温度的升高,岩样中裂纹数量增加,裂纹宽度增大,逐渐形成裂隙网络,而且遇水冷却条件下花岗岩微观结构劣化程度比自然降温条件更高。

    图  8  高温后花岗岩SEM图像
    Figure  8.  SEM images of granite after high-temperature treatment

    通过对SEM图像的观察,定性分析了高温后花岗岩试样热裂纹分布特征,然而不同冷却方式下花岗岩热裂纹之间的细微差别难以直接从SEM原始图像中观察得到。因此,利用图像处理技术,统计高温后花岗岩SEM图像中微裂纹面积,计算高温后花岗岩微裂纹密度(定义为微裂纹面积与图像总面积的比值),定量分析不同温度和冷却方式对花岗岩热裂纹的影响规律。本文图像处理流程为:采用Matlab对SEM原始图像进行二值化处理,通过设置阈值区分图像中微裂纹和岩石基质,从而识别图像中的微裂纹;进一步,通过编写程序统计微裂纹像素点,获得微裂纹面积和图像总面积,计算得到微裂纹密度。

    对不同高温及冷却方式下花岗岩试样SEM图像进行处理,结果如图 9所示。图中白色区域为裂纹,黑色区域为岩石基质。与图 8比较可见,二值化处理结果与花岗岩表面真实裂纹相吻合,通过处理后的图像能够更清晰地分辨微裂纹的数量、长度、尺寸和分布形态。

    图  9  基于图像处理的高温后花岗岩微裂纹分布
    Figure  9.  Micro-crack distribution of granite specimens after high temperature based on image processing

    计算得到不同温度和冷却条件下花岗岩试样微裂纹密度,如图 10所示。由图 10可见,在本次试验观察倍率下(500倍),未经高温处理的致密花岗岩中几乎没有微观裂纹,此时微裂纹密度接近于零。当温度为800℃时,A组花岗岩自然降温、A组花岗岩遇水冷却、B组花岗岩自然降温、B组花岗岩遇水冷却微裂纹密度分别为200℃时的16.1,11.0,11.1和13.3倍。可以看出,随着温度的升高,花岗岩试样中微裂纹密度逐渐上升,遇水冷却方式下微裂纹密度大于自然降温方式,相同条件下B组花岗岩的微裂纹密度略高于A组岩样,说明对于本次试验花岗岩微观结构随温度升高而劣化,遇水冷却条件下劣化程度更高,而且B组花岗岩劣化程度比A组略高。结合图 5可知,基于图像处理技术统计的微裂纹密度在一定程度上解释了花岗岩断裂韧度演化规律,即高温作用导致的微观结构劣化,降低了花岗岩试样的断裂韧度。

    图  10  花岗岩热裂纹密度随温度演化曲线
    Figure  10.  Evolution of thermal crack rate of granite with test temperature

    图 11给出了高温后A组花岗岩X射线衍射图谱。常温条件下,该花岗岩主要矿物成分为石英、斜长石、正长石和黑云母。经历不同高温作用后花岗岩的主要矿物成分与未经高温处理花岗岩的成分相同,而且各矿物的衍射角未发生明显变化,说明本试验范围内高温作用并未明显影响该花岗岩的矿物组分。但是,矿物在不同温度条件下对应的最大衍射强度有所变化,这可能与岩石矿物相变相关。高温下岩石矿物相变通常会造成矿物体积发生变化,引起岩样内部结构局部损伤,在一定程度上造成了花岗岩宏观力学参数的劣化[25]

    图  11  高温后A组花岗岩试样X射线衍射图谱
    Figure  11.  XRD spectra of group A granite after high-temperature treatment

    不同温度及冷却方式下花岗岩矿物含量,如图 12所示。当温度低于600℃时,花岗岩各矿物含量变化较小,当温度超过600℃后,矿物含量变化相对较大。在本次试验温度范围内,A组花岗岩试样石英含量整体呈增大趋势,长石(斜长石和正长石)含量整体呈减小趋势,与文献[2627]试验结果相类似,而黑云母含量相对稳定。然而,在试验温度范围内,自然降温和遇水冷却两种冷却方式对本文花岗岩矿物含量的影响不明显。

    图  12  不同高温作用后A组花岗岩矿物含量
    Figure  12.  Mineral components of group A granite after high-temperature treatment

    除岩石热开裂、矿物含量变化外,高温对岩石结构的影响还体现在水分丧失等方面。结合Wong等[28]和邓龙传等[7]研究结论,温度升高过程岩石内部结构主要变化如图 13所示。高温作用下岩石矿物颗粒发生膨胀,因各类矿物的热膨胀系数不同,岩石发生不均匀膨胀。当矿物颗粒受到的热应力超过极限时,岩石内部产生微观裂纹[15-17]。同时,岩石内不同形式水分逐渐丧失,加剧岩石矿物晶格骨架损伤。当温度达到一定程度后,矿物发生相变和分解等作用,进一步导致了岩石内部结构的劣化。因而,高温后花岗岩试样断裂韧度降低。此外,试样在遇水冷却条件下高温花岗岩表面降温速率较快,而内部降温速率较慢,试样内部和表面产生的剧烈温差产生较大热应力,导致试样内部结构进一步恶化[29],因此遇水冷却条件下花岗岩断裂韧度低于自然降温条件。

    图  13  升温过程岩石内部结构主要变化
    Figure  13.  Major changes in rock at elevated temperature

    (1)随着温度的升高,花岗岩试样的断裂韧度呈减小趋势,遇水冷却方式下花岗岩断裂韧度低于自然降温条件,而且随着温度的升高,由遇水冷却导致的断裂韧度弱化程度呈降低趋势,B组花岗岩对温度的敏感程度略低于A组花岗岩。

    (2)三点弯曲作用下花岗岩半圆盘试样裂纹首先萌生于切槽尖端,逐渐向加载点方向扩展并将岩样劈裂。当温度较低时,花岗岩断裂痕迹相对较直,与中心线的距离相对较小;随着温度的升高,花岗岩半圆盘试样的断裂痕迹曲折程度增大,与中心线的距离也有所增大。

    (3)随着温度的升高,花岗岩矿物成分未明显变化,但基于图像处理获得的花岗岩微裂纹密度逐渐上升,而且遇水冷却方式下微裂纹密度大于自然降温方式。高温导致的岩石内部微观结构劣化,降低了花岗岩的断裂韧度。

    致谢: 感谢《岩土工程学报》全体编委的信任,特别要感谢中国水利学会岩土力学专委会的推荐,使本人有机会作黄文熙讲座;感谢南京水利科学研究院岩土工程研究所同仁们对本项研究的大力支持和帮助:徐光明、李景林、焦志斌、范明桥、关云飞、武颖利、任国峰、顾行文等;感谢深水板桩码头新结构开发过程中战友们:刘永绣、吴荔丹、朱吉全、董文才、王成环、于泳、李元音等;感谢门下的一些博士、硕士研究生的共同努力:司海宝、蒋敏敏、崔冠辰、侯伟、朱洵、代志宇等。
  • 图  1   深水板桩码头新结构

    Figure  1.   Innovative structure of sheet-pile wharves

    图  2   NHRI 400 g·t大型土工离心机

    Figure  2.   NHRI centrifuge system (400 g·t)

    图  3   单墙模型及传感器布置图(修改自蔡正银等[54])

    Figure  3.   Layout of single wall model and sensors (after Cai et al.[54])

    图  4   离心场下单墙侧向土压力分布 (修改自蔡正银等[54])

    Figure  4.   Lateral earth pressure profile against single wall (after Cai et al.[54])

    图  5   模型和传感器布置

    Figure  5.   Layout of model and transducers

    图  6   土样颗粒分布曲线

    Figure  6.   Grain-size distribution curve of soil

    图  7   出砂口类型

    Figure  7.   Types of sand rainner outlet

    图  8   不同相对密度砂土的制样路径

    Figure  8.   Sample preparation paths of sand with different relative densities

    图  9   不同初始相对密度下土压力沿侧深分布(#1砂土)

    Figure  9.   Distribution of earth pressures along side wall depth at different initial relative densities (sand No. 1)

    图  10   不同初始相对密度下K0及Jaky公式计算结果(#1砂土)

    Figure  10.   Distribution of K0 at different initial relative densities and calculated results by Jaky formula (sand No. 1)

    图  11   不同级配砂土的K0分布

    Figure  11.   K0 distribution of different graded sands

    图  12   遮帘式板桩码头结构示意图 (引自蔡正银等[5])

    Figure  12.   Sheet-pile wharf with barrier piles (after Cai et al.[5])

    图  13   双墙模型及传感器布置 (引自蔡正银等[54])

    Figure  13.   Layout of double-wall model and sensors (after Cai et al.[54])

    图  14   不同墙桩间距前墙陆侧土压力分布 (引自蔡正银等[54])

    Figure  14.   Distribution of earth pressures on front wall and side wall with different wall pile spacings (after Cai et al.[54])

    图  15   京唐港遮帘式板桩码头结构#32泊位剖面图

    Figure  15.   Sectional view of berth No. 32 of barrier sheet-pile structures in Jingtang Port

    图  16   墙桩间距对遮帘桩码头结构前墙受力的影响 (修改自..蔡正银等[51])

    Figure  16.   Influences of distance between wall piles on stress of front wall of barrier pile wharf structure (after Cai et al.[51])

    图  17   墙桩刚度对遮帘桩码头结构前墙受力的影响 (修改自.蔡正银等[51])

    Figure  17.   Influences of pile stiffness on stress of front wall of barrier pile pier structures (after Cai et al.[51])

    图  18   遮帘式板桩码头结构模型图

    Figure  18.   Model of wharf structures with barrier piles

    图  19   遮帘式结构水平位移分布 (修改自蔡正银等[5])

    Figure  19.   Distribution of horizontal displacement of barrio pile structures (after Cai et al.[5])

    图  20   前墙土压力分布 (修改自蔡正银等[5])

    Figure  20.   Earth pressures on front wall (after Cai et al.[5])

    图  21   遮帘桩土压力分布 (修改自蔡正银等[5])

    Figure  21.   Earth pressures on barrier pile (after Cai et al.[5])

    图  22   遮帘式与单锚板桩结构前墙计算结果比较 (修改自蔡正银等[5])

    Figure  22.   Comparison of calculated results of barrier pile wall and single anchor sheet-pile front wall (after Cai et al.[5])

    图  23   京唐港分离卸荷式板桩码头结构#36泊位剖面图

    Figure  23.   Sectional view of berth No. 36 of separated unloading sheet-pile structures in Jingtang Port

    图  24   考虑卸荷效应的地基土竖向应力计算

    Figure  24.   Calculation of vertical stress for soil layers with relief platform

    图  25   卸荷效果的数值模拟

    Figure  25.   Relief effects by numerical simulation

    图  26   板桩码头前墙陆侧土压力分布 (修改自蔡正银等[8])

    Figure  26.   Earth pressures on front wall at landward side for sheet-pile wharf (after Cai et al.[8])

    图  27   分离卸荷式码头前墙土压力及水平位移分布(修改自.蔡正银等[8])

    Figure  27.   Distribution of earth pressure and horizontal displacement in front wall of sheet-pile wharf with separated relief platform (after Cai et al.[8])

    图  28   土压力与挡墙位移关系曲线

    Figure  28.   Relationship between earth pressure and displacement of retaining wall

    图  29   卸荷式板桩码头主动土压力计算分区图

    Figure  29.   Zoning map of active earth pressure calculation for unloading sheet pile wharf

    图  30   卸荷式板桩码计算结果的对比

    Figure  30.   Comparison of calculated results

    表  1   不同墙桩间距下的墙间土压力 (引自蔡正银等[54])

    Table  1   Earth pressures between walls at different wall pile spacings (after Cai et al.[54])

    模型编号模型墙桩距离/mm原型墙桩距离/m地基土密度/(g·cm-3)平均侧压力系数ˉK
    #140.03.01.460.41
    #253.34.01.470.36
    #366.75.01.470.34
    #480.06.01.490.31
    下载: 导出CSV

    表  2   土层的基本物理力学参数

    Table  2   Basic physical and mechanical parameters of soil layers

    土层编号土层名称厚度/m天然重度γ/(kN·m-3)含水率w/%
    细砂9.718.0/19.0
    ②-1粉土2.219.324.2
    ②-2淤泥6.617.643.1
    ②-3粉土1.119.131.2
    细砂10.519.721.9
    粉土2.819.725.0
    细砂3.419.717.4
    下载: 导出CSV

    表  3   邓肯-张模型参数

    Table  3   Parameters for Duncan-Chang model

    参数c/kPaφ/(°)Kn
    粉土31.3730.1855.590.861
    淤泥40.3722.6839.260.618
    细砂030.974760.886
    参数RfKbmKur
    粉土0.64026.180.722100.0
    淤泥0.52211.121.11258.9
    细砂0.931100.100.787856.8
    下载: 导出CSV

    表  4   京唐港地区细砂物理力学性质

    Table  4   Physical and mechanical properties of fine sand in Jingtang Port

    土层重度 γ/(kN·m-3)含水率 w/%孔隙比 e三轴指标压缩模量 E s/MPa
    c/kPaϕ/(°)
    细砂19.721.90.630.031.039.4
    下载: 导出CSV

    表  5   京唐港地区细砂NHRI本构模型试验参数

    Table  5   NHRI model parameters of fine sand in Jingtang Port

    c/kPaφ /(°)RfKnCbndrdKur
    032.00.924760.380.0120.50.91952
    下载: 导出CSV

    表  6   卸荷效率-土压力形式

    Table  6   Relief efficiency with earth pressure

    工况卸荷效应卸荷效率
    PDM/kNPXH/kNηep/%
    开挖至-2.8 m3063266013.2
    开挖至-11.8 m2781226318.6
    20 kPa均布荷载3209277513.5
    下载: 导出CSV

    表  7   卸荷效率-水平位移形式

    Table  7   Relief efficiency with maximum lateral displacement

    工况水平卸荷效应卸荷效率
    UDM/cmUXH/cmηep/%
    开挖至-2.8 m2.321.7922.9
    开挖至-11.8 m5.243.5831.7
    20 kPa均布荷载7.294.4239.4
    下载: 导出CSV

    表  8   土压力计算参数

    Table  8   Parameters of earth pressure

    参数h/mH/mδ/mγ/(kN·m-3)ϕ/(°)
    取值2538.2319.332
    下载: 导出CSV
  • [1] 季则舟, 杨兴宴, 尤再进, 等. 中国沿海港口建设状况及发展趋势[J]. 中国科学院院刊, 2016, 31(10): 1211-1217. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201610012.htm

    JI Ze-zhou, YANG Xing-yan, YOU Zai-jin, et al. Construction state and development trend of coastal ports in China[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(10): 1211-1217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201610012.htm

    [2] “中国海洋工程与科技发展战略研究”海陆关联课题组. 海陆关联工程科技发展战略[J]. 中国工程科学, 2016, 18(2): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201602007.htm

    Task Force for the Study on Development Strategy of China's Marine Engineering and Technology Land-Sea Integration Research Group. Land-sea integration engineering and technology development strategy[J]. Strategic Study of CAE, 2016, 18(2): 49-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201602007.htm

    [3] 刘永绣. 板桩码头向深水化发展的方案构思和实践-遮帘式板桩码头新结构的开发[J]. 港工技术, 2005(增刊1): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-GAOG2005S1003.htm

    LIU Yong-xiu. Design conception and practice of building sheet pile wharfs in deep waters-development of a new structure of covered type of sheet pile wharf[J]. Port Engineering Technology, 2005(S1): 12-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GAOG2005S1003.htm

    [4] 刘文平, 郑颖人, 雷用, 等. 遮帘式板桩码头结构有限元数值分析[J]. 岩土工程学报, 2010, 32(增刊1): 135-141. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1027.htm

    LIU Wen-ping, ZHENG Ying-ren, LEI Yong, et al. Finite element numerical analysis of covered sheet pile wharfs[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S1): 135-141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1027.htm

    [5] 蔡正银, 侯伟, 关云飞. 遮帘式板桩码头的工作机理[J]. 岩土工程学报, 2015, 37(10): 1745-1750. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201510002.htm

    CAI Zheng-yin, HOU Wei, GUAN Yun-fei. Mechanism of sheet-pile wharf with barrier piles[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1745-1750. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201510002.htm

    [6] 刘永绣. 板桩和地下墙码头的设计理论和方法[M]. 北京: 人民交通出版社, 2006.

    LIU Yong-xiu. The Design Theory and Method of Sheet Pile and Underground Continuous Wall[M]. Beijing: People Communication Press, 2006. (in Chinese)

    [7] 刘永绣, 吴荔丹, 李元音. 一种新型码头结构型式——半遮帘式深水板桩码头结构的推出[J]. 港工技术, 2005(增刊1): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-GAOG2005S1004.htm

    LIU Yong-xiu, WU Zhi-dan, LI Yuan-yin. A new type of wharf structure the structure of semi-covered type of deep water sheet pile wharf[J]. Port Engineering Technology, 2005(S1): 16-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GAOG2005S1004.htm

    [8] 蔡正银, 侯伟, 关云飞, 等. 分离卸荷式板桩码头的工作机理[J]. 岩土工程学报, 2015, 37(12): 2133-2139. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201512002.htm

    CAI Zheng-yin, HOU Wei, GUAN Yun-fei, et al. Mechanism of sheet-pile wharf with separated relief platform[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2133-2139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201512002.htm

    [9] 蔡正银, 刘永绣, 关云飞, 等. 20万吨级深水板桩码头结构开发[J]. 港口科技, 2016(2): 4-7, 19. https://www.cnki.com.cn/Article/CJFDTOTAL-GKKJ201602007.htm

    CAI Zheng-yin, LIU Yong-xiu, GUAN Yun-fei, et al. Development of 200 000-tonnage Sheet pile wharf structure[J]. Port Science & Technology, 2016(2): 4-7, 19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GKKJ201602007.htm

    [10]

    BROOKER E W, IRELAND H O. Earth pressures at rest related to stress history[J]. Canadian Geotechnical Journal, 1965, 2(1): 1-15. doi: 10.1139/t65-001

    [11] 陈祖煜. 土质边坡稳定分析-原理、方法、程序[M]. 北京: 中国水利水电出版社, 2003.

    CHEN Zu-yu. Soil Slope Stability Analysis[M]. Beijing: China WaterPower Press, 2003. (in Chinese)

    [12] 殷宗泽. 土力学与地基[M]. 北京: 中国水利水电出版社, 1999.

    YIN Zong-ze. Soil Mechanics and Foundation[M]. Beijing: China WaterPower Press, 1999. (in Chinese)

    [13] 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004.

    LI Guang-xin. Advanced Soil Mechanics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese)

    [14] 陈国兴. 土质学与土力学[M]. 北京: 中国水利水电出版社, 2002.

    CHEN Guo-xing. Soil Quality and Soil Mechanics[M]. Beijing: China WaterPower Press, 2002. (in Chinese)

    [15] 黄文熙. 土的工程性质[M]. 北京: 水利电力出版社, 1983.

    HUANG Wen-xi. Engineering Properties of Soil[M]. Beijing: China Water Conservancy and Electricity Press. 1983. (in Chinese)

    [16] 卢廷浩, 刘祖德. 高等土力学[M]. 北京: 机械工业出版社, 2006.

    LU Ting-hao, LIU Zu-de. Adcanced Soil Mechanics[M]. Beijing: China Machine Press. 2006. (in Chinese)

    [17] 高大钊. 土力学与基础工程[M]. 北京: 中国建筑工业出版社, 1998.

    GAO Da-zhao. Soil Mechanics and Foundation Engineering[M]. Beijing: China Architecture & Building Press. 1998. (in Chinese)

    [18]

    BROOKER E W, IRELAND H O. Earth pressures at rest related to stress history[J]. Canadian Geotechnical Journal, 1965, 2(1): 1-15. doi: 10.1139/t65-001

    [19] 纠永志, 黄茂松. 超固结软黏土的静止土压力系数与不排水抗剪强度[J]. 岩土力学, 2017, 38(4): 951-957, 964. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201704005.htm

    JIU Yong-zhi, HUANG Mao-song. Coefficient of earth pressure at rest and undrained shear strength of overconsolidated soft clays[J]. Rock and Soil Mechanics, 2017, 38(4): 951-957, 964. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201704005.htm

    [20]

    MESRI G, HAYAT T. The coefficient of earth pressure at rest[J]. Canadian Geotechnical Journal, 1993, 30(4): 647-666. doi: 10.1139/t93-056

    [21]

    SHOGAKI T, NOCHIKAWA Y. Triaxial strength properties of natural deposits at K0 consolidation state using a precision triaxial apparatus with small size specimens[J]. Soils and Foundations, 2004, 44(2): 41-52. doi: 10.3208/sandf.44.2_41

    [22]

    VARDHANABHUTI B, MESRI G. Coefficient of earth pressure at rest for sands subjected to vibration[J]. Canadian Geotechnical Journal, 2007, 44(10): 1242-1263. doi: 10.1139/T07-032

    [23]

    WANG J J, YANG Y, BAI J, et al. Coefficient of earth pressure at rest of a saturated artificially mixed soil from oedometer tests[J]. KSCE Journal of Civil Engineering, 2018, 22: 1691-1699. doi: 10.1007/s12205-017-1811-3

    [24]

    ARTHUR J R F, MENZIES B K. Inherent anisotropy in a sand[J]. Géotechnique, 1972, 22(1): 115-128. doi: 10.1680/geot.1972.22.1.115

    [25] 刘麟, 顾晓强, 黄茂松. 利用带弯曲元应力路径三轴仪量测静止土压力系数研究[J]. 岩土工程学报, 2017, 39(增刊2): 212-215. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S2052.htm

    LIU Lin, GU Xiao-qiang, HUANG Mao-song. K0-determination by stress path triaxial apparatus with bender element[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S2): 212-215. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S2052.htm

    [26] 岩土工程勘察规范:GB50021—2001 (2009年版)[S]. 北京: 中国建筑工业出版社, 2009.

    Code for investigation of geotechnical engineering: GB 50021—2001 (Version 2009)[S]. Beijing: China Architecture & Building Press, 2009. (in Chinese)

    [27] 徐东升, 汪稔, 孟庆山, 等. 黄河三角洲粉土原位力学性能试验研究[J]. 岩石力学与工程学报, 2010, 29(2): 409-416. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002029.htm

    XU Dong-sheng, WANG Ren, MENG Qing-shan, et al. Experimental research on in-situ mechanical properties of silt in yellow river delta[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 409-416. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002029.htm

    [28] 王沛, 丁克胜, 杨宝珠. 自钻式旁压仪测定土的侧压力试验研究[J]. 岩土工程学报, 2008, 30(增刊1): 416-418. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2008S1090.htm

    WANG Pei, DING Ke-sheng, YANG Bao-zhu. Lateral pressure of soil by self-boring pressuremeter[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(S1): 452-460. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2008S1090.htm

    [29] 尹松, 孔令伟, 张先伟, 等. 基于自钻式旁压仪的残积土原位力学特性试验研究[J]. 岩土工程学报, 2016, 38(4): 688-695. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604015.htm

    YIN Song, KONG Ling-wei, ZHANG Xian-wei, et al. Experimental study on in-situ properties of residual soil by self-boring pressuremeter[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 688-695. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604015.htm

    [30]

    MARCHETTI S. In-situ tests by fiat dilatometer[J]. Journal of the Geotechnical Engineering Division, ASCE, 1980, 106(4): 299-321.

    [31]

    LUNNE T, POWELL J M, HAUGE E A, et al. Correlation of dilatometer readings with lateral stress in clay[J]. Transport Research Record, 1990, 1278: 183-493.

    [32] 赵富军. 天津地铁静止侧压力系数确定方法研究[J]. 铁道工程学报, 2016, 33(12): 99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201612021.htm

    ZHAO Fu-jun. Research on the method of the determination of static lateral pressure coefficient in Tianjin metro[J]. Journal of Railway Engineering Society, 2016, 33(12): 99-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201612021.htm

    [33] 童立元, 刘松玉, 张焕荣, 等. 应用SCPTu确定静止土压力系数的试验研究[J]. 土木工程学报, 2013, 46(4): 117-123. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201304018.htm

    TONG Li-yuan, LIU Song-yu, ZHANG Huan-rong, et al. Determination of coefficient of earth pressure at rest (K0) using seismic piezocone tests[J]. China Civil Engineering Journal, 2013, 46(4): 117-123. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201304018.htm

    [34] 耿功巧, 陈妍, 蔡国军, 等. 基于CPTU原位测试的深基坑工程中黏性土静止土压力系数的评价研究[J]. 工程勘察, 2019, 47(9): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201909015.htm

    GENG Gong-qiao, CHEN Yan, CAI Guo-jun, et al. Determination of static earth pressure coefficient of clay in deep excavation project based on piezocone penetration test[J]. Geotechnical Investigation & Surveying, 2019, 47(9): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201909015.htm

    [35] 王国富, 曹正龙, 路林海, 等. 黄河冲积层静止土压力系数原位测定与分析[J]. 岩土力学, 2018, 39(10): 3900-3906. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810050.htm

    WANG Guo-fu, CAO Zheng-long, LU Lin-hai, et al. Measurement and analysis about coefficient of earth pressure at rest in alluvium of the Yellow river[J]. Rock and Soil Mechanics, 2018, 39(10): 3900-3906. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810050.htm

    [36]

    JAKY J. The coefficient of earth pressure at rest[J]. Journal of the Society of Hungarian Architects and Engineers, 1944, 78(22): 355-358.

    [37]

    ALPAN I. The empirical evaluation of the coefficients K0 and K0R[J]. Soils and Foundations, 1967, 7(1): 31-40.

    [38]

    SCHMIDT B. Discussion of earth pressures at rest related to stress history[J]. Canadian Geotechnical Journal, 1966, 3(4): 239-242.

    [39] 沈靠山. 覆盖层砂卵石料静止侧压力系数研究[D]. 南京: 河海大学, 2009.

    SHEN Kao-shan. Study of Coefficient of Earth Pressure at Rest on Gravel Soil[D]. Nanjing: Hohai University, 2009. (in Chinese)

    [40] 徐光明, 陈爱忠, 曾友金, 等. 超重力场中界面土压力的测量[J]. 岩土力学, 2007, 28(12): 2671-2674. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200712040.htm

    XU Guang-ming, CHEN Ai-zhong, ZENG You-jin, et al. Measurement of boundary total stress in a multi-gravity environment[J]. Rock and Soil Mechanics, 2007, 28(12): 2671-2674. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200712040.htm

    [41] 土工试验方法标准:GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Test Methods: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

    [42] 李浩, 罗强, 张正, 等. 砂雨法制备砂土地基模型控制要素试验研究[J]. 岩土工程学报, 2014, 36(10): 1872-1878. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201410020.htm

    LI Hao, LUO Qiang, ZHANG Zheng, et al. Experimental study on control element of sand pourer preparation of sand foundation model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1872-1878. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201410020.htm

    [43] 马险峰, 孔令刚, 方薇, 等. 砂雨法试样制备平行试验研究[J]. 岩土工程学报, 2014, 36(10): 1791-1801. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201410007.htm

    MA Xian-feng, KONG Ling-gang, FANG Wei, et al. Parallel tests on preparation of samples with sand pourer[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1791-1801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201410007.htm

    [44] 梁波, 厉彦君, 凌学鹏, 等. 离心模型试验中微型土压力盒土压力测定[J]. 岩土力学, 2019, 40(2): 818-826. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902047.htm

    LIANG Bo, LI Yan-jun, LING Xue-peng, et al. Determination of earth pressure by miniature earth pressure cell in centrifugal model test[J]. Rock and Soil Mechanics, 2019, 40(2): 818-826. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902047.htm

    [45] 刘守华, 蔡正银, 徐光明, 等. 超深厚吹填粉细砂地基大型离心模型试验研究[J]. 岩土工程学报, 2004, 26(6): 846-850. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC20040600N.htm

    LIU Shou-hua, CAI Zheng-yin, XU Guang-ming, et al. Centrifuge modeling of the silty sand foundation of super-high fill[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(6): 846-850. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC20040600N.htm

    [46] 应宏伟, 蒋波, 谢康和. 考虑土拱效应的挡土墙主动土压力分布[J]. 岩土工程学报, 2007, 29(5): 90-95. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200705014.htm

    YING Hong-wei, JIANG Bo, XIE Kang-he. Distribution of active earth pressure against retaining walls considering arching effects[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 90-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200705014.htm

    [47] 曹卫平, 陈仁朋, 陈云敏. 桩承式加筋路堤土拱效应试验研究[J]. 岩土工程学报, 2007, 29(3): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200703021.htm

    CAO Wei-ping, CHEN Ren-peng, CHEN Yun-min. Experimental investigation on soil arching in piled reinforced embankments[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 129-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200703021.htm

    [48] 徐光明, 蔡正银, 曾友金, 等. 京唐港#18、#19泊位卸荷式地连墙板桩码头方案离心模型试验研究报告[R]. 南京: 南京水利科学研究院, 2007.

    XU Guang-ming, CAI Zheng-yin, ZENG You-jin, et al. Report of Centrifugal Model Tests on Sheet-Pile Wharf With Relief Diaphragm of Berth No. 18 and 19 of Jingtang Port[R]. Nanjing: Nanjing Hydraulic Research Institute, 2007. (in Chinese)

    [49] 李景林, 蔡正银, 徐光明, 等. 遮帘式板桩码头结构离心模型试验研究[J]. 岩石力学与工程学报, 2007, 26(6): 1182-1187. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200706012.htm

    LI Jing-lin, CAI Zheng-yin, XU Guang-ming, et al. Centrifuge modelling test on covered sheet-piled structure of wharf[J]. 2007, 26(6): 1182-1187. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200706012.htm

    [50] 司海宝, 蔡正银, 俞缙. 遮帘式板桩码头结构与土共同作用3D数值模拟分析[J]. 土木工程学报, 2012, 45(5): 182-190. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201205020.htm

    SI Hai-bao, CAI Zheng-yin, YU Jin. 3D Numerical modeling of pile-soil interaction for covered sheet-piled wharf[J]. China Civil Engineering Journal, 2012, 45(5): 182-190. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201205020.htm

    [51] 崔冠辰, 蔡正银, 李小梅, 等. 遮帘式板桩码头工作机理初探[J]. 岩土工程学报, 2012, 34(4): 762-766. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204029.htm

    CUI Guan-chen, CAI Zheng-yin, LI Xiao-mei, et al. Preliminary investigation on working mechanism of covered sheet-pile wharfs[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 762-766. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204029.htm

    [52] 司海宝, 蔡正银. 基于ABAQUS建立土体本构模型库的研究[J]. 岩土力学, 2011, 32(2): 599-603. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201102054.htm

    SI Hai-bao, CAI Zheng-yin. Development of static constitutive model library for soils based on ABAQUS[J]. Rock and Soil Mechanics, 2011, 32(2): 599-603. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201102054.htm

    [53] 刘永绣, 吴荔丹, 徐光明, 等. 遮帘式板桩码头工作机制[J]. 水利水运工程学报, 2006(2): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY200602001.htm

    LIU Yong-xiu, WU Li-dan, XU Guang-ming, et al. Working mechanism of sheet pile wharf with barrier piles[J]. Hydro-Science and Engineering, 2006(2): 8-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY200602001.htm

    [54] 蔡正银, 徐光明, 曾有金, 等. 遮帘式板桩码头土压力离心模型试验研究[J]. 港工技术, 2007, 26(6): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-GAOG2005S1012.htm

    CAI Zheng-yin, XU Guang-ming, ZENG You-jin, et al. Experimental study of centrifugal models to test earth pressure on covered sheet pile wharfs[J]. Port Engineering Technology, 2007, 26(6): 51-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GAOG2005S1012.htm

    [55] 焦志斌, 蔡正银, 王剑平, 等. 遮帘式板桩码头原型观测技术研究[J]. 港工技术, 2005(增刊): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-GAOG2005S1013.htm

    JIAO Zhi-bin, CAI Zheng-yin, WANG jian-ping, et al. Study on prototype observation technique of semi-covered type of sheet pile[J]. Port Engineering Technology, 2005(S0): 56-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GAOG2005S1013.htm

    [56] 焦志斌, 蔡正银, 徐光明, 等. 遮帘式地连墙板桩结构遮帘效应研究[J]. 水利学报, 2014, 45(增刊2): 125-129. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2014S2020.htm

    JIAO Zhi-bin, CAI Zheng-yin, XU Guang-ming, et al. Barrier effect of covered sheet pile wharfs with diaphragm walls[J]. Journal of Hydraulic Engineering, 2014, 45(S2): 125-129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2014S2020.htm

    [57] 彭益达, 赵利平. 港池开挖对遮帘式板桩码头结构的影响[J]. 中国水运, 2014, 14(4): 303-305. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201404133.htm

    PENG Yi-da, ZHAO Li-ping. The impaction of harbor excavation on the covered sheet-piled wharf[J]. China Water Transport, 2014, 14(4): 303-305. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201404133.htm

    [58] 黄伟, 潘泓, 王燕燕. 全遮帘式板桩码头结构遮帘桩合理桩间距确定[J]. 地下空间与工程学报, 2012, 8(1): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201201021.htm

    HUANG Wei, PAN Hong, WANG Yan-yan. Determination on rational spacing of barrier pile for all-covered type of sheet pile wharf[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(1): 129-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201201021.htm

    [59] 王元战, 龚晓龙, 李斌. 遮帘式板桩码头的遮帘效果及其影响因素分析[J]. 水道港口, 2014, 35(1): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGK201401025.htm

    WANG Yuan-zhan, GONG Xiao-long, LI Bin. Analysis on sheltering effect of covered sheet pile wharf and its influencing factors[J]. Journal of Waterway and Harbor, 2014, 35(1): 81-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDGK201401025.htm

    [60] 刘进生, 刘永绣. 卸荷式板桩码头结构在汉堡港的应用[J]. 港工技术, 2005(4): 20-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GAOG200504006.htm

    LIU Jin-sheng, LIU Yong-xiu. Application of relieving type of sheet pile wharf structure to Hamburg port[J]. Port Engineering Technology, 2005(4): 20-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GAOG200504006.htm

    [61] 龚丽飞. 分离卸荷式地下连续墙板桩码头结构与土相互作用研究[D]. 南京: 南京水利科学研究院, 2007.

    GONG Li-fei. Researches on Structure-Soil of Sheet-Pile Wharfs with Relief Platform and Diaphragm Wall[D]. Nanjing: Nanjing Hydraulic Research Institute, 2009. (in Chinese)

    [62] 徐光明, 刘阳, 任国峰, 等. 20万吨级卸荷式板桩码头离心模型试验研究[J]. 岩土工程学报, 2018, 40(1): 46-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801004.htm

    XU Guang-ming, LIU Yang, REN Guo-feng, et al. Centrifuge modeling of 200000 tonnage sheet-pile wharfs with relief platform[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 46-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801004.htm

    [63] 蔡正银, 关云飞. 卸荷式板桩码头数值仿真平台开发及有限元计算[J]. 港口科技, 2016(3): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GKKJ201603001.htm

    CAI Zheng-yin, GUAN Yun-fei. Numerical simulation platform development and finite element calculation for relieving sheet-pile[J]. Science Technology of Ports, 2016(3): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GKKJ201603001.htm

    [64]

    TERZAGHI K. Theoretical Soil Mechanics[M]. New York: Wiley, 1943.

    [65] 梅国雄, 宰金珉. 现场监测实时分析中的土压力计算公式[J]. 土木工程学报, 2000, 33(5): 79-82. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200005018.htm

    MEI Guo-xiong, ZAI Jin-min. A new formula for earth pressure[J]. China Civil Engineering Journal, 2000, 33(5): 79-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200005018.htm

    [66] 交通部第一航务工程勘察设计院. 海港工程设计手册[M]. 北京: 人民交通出版社, 1994.

    CCCC First Navigation Engineering Survey and Design Institute. Harbour Engineering Design Manual[M]. Beijing: China Communications Press, 1994. (in Chinese)

    [67] 侯伟. 卸荷式板桩码头结构关键问题研究[D]. 上海: 同济大学, 2015.

    HOU Wei. Research on Key Issues in the Sheet Pile Wharf with Relieving Platform[D]. Shanghai: Tongji University, 2015. (in Chinese)

  • 期刊类型引用(6)

    1. 唐宇,阳军生,郑响凑,童甲修,汤冲. 高温富水隧道弱风化片麻岩力学特性试验研究. 岩石力学与工程学报. 2025(01): 128-139 . 百度学术
    2. 马双泽,陈伟,吕聪聪,张塑彪,张帆. 高温与循环冷却对花岗岩抗剪强度影响试验研究. 矿业研究与开发. 2025(03): 137-147 . 百度学术
    3. 王健翔,孙珍平,王士奎,许蕾. 高温作用后砂岩力学性能及裂纹演化特征研究. 金属矿山. 2025(04): 61-68 . 百度学术
    4. 朱振南,王殿永,杨圣奇,解经宇,袁益龙,吴廷尧,田文岭,孙博文,田红,陈劲. 不同冷却速率下干热花岗岩渗透率演化特征对比研究. 岩石力学与工程学报. 2024(02): 385-398 . 百度学术
    5. 周韬,范永林,陈家嵘,周昌台. 热损伤花岗岩力学劣化特性及损伤演化规律研究. 矿业科学学报. 2024(03): 351-360 . 百度学术
    6. 何将福,任成程,何坤,余启航,李欣儒,邓旭. 循环热冲击花岗岩微观裂隙表征与渗透特性演化规律. 煤田地质与勘探. 2024(12): 131-142 . 百度学术

    其他类型引用(9)

图(30)  /  表(8)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 15
出版历程
  • 收稿日期:  2020-01-08
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-01-31

目录

/

返回文章
返回