• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于颗粒破碎特性的堆石材料级配演化模型

赵飞翔, 迟世春, 米晓飞

赵飞翔, 迟世春, 米晓飞. 基于颗粒破碎特性的堆石材料级配演化模型[J]. 岩土工程学报, 2019, 41(9): 1707-1714. DOI: 10.11779/CJGE201909015
引用本文: 赵飞翔, 迟世春, 米晓飞. 基于颗粒破碎特性的堆石材料级配演化模型[J]. 岩土工程学报, 2019, 41(9): 1707-1714. DOI: 10.11779/CJGE201909015
ZHAO Fei-xiang, CHI Shi-chun, MI Xiao-fei. Gradation evolution model based on particle breakage characteristics for rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1707-1714. DOI: 10.11779/CJGE201909015
Citation: ZHAO Fei-xiang, CHI Shi-chun, MI Xiao-fei. Gradation evolution model based on particle breakage characteristics for rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1707-1714. DOI: 10.11779/CJGE201909015

基于颗粒破碎特性的堆石材料级配演化模型  English Version

基金项目: 国家重点研发计划项目(2016YFB0201001)
详细信息
    作者简介:

    赵飞翔(1991— ),男,博士研究生,主要从事岩石颗粒破碎特性的研究工作。E-mail: zhaofx0506@163.com。

    通讯作者:

    迟世春,E-mail:schchi@dlut.edu.cn

Gradation evolution model based on particle breakage characteristics for rockfill materials

  • 摘要: 颗粒破碎会改变土体级配,进而影响其应力应变等力学行为。针对现有技术手段难以实时确定加载过程中颗粒破碎与级配变化的现状,依据天然岩石颗粒的破碎特性,建立了一个基于颗粒强度的级配演化模型。模型中应力参数采用增量加载法,可预测加载过程中的级配演化。由单粒强度试验确定颗粒破碎特性和模型参数,试验结果表明颗粒强度服从Weibull分布。筛分颗粒破碎后的碎片发现,粒径累计分布可用正态曲线拟合,且不同粒组的粒径累计分布相似。最后,模型计算结果与三轴试验数据的对比分析表明,模型可以较好地预测试样在加载过程中的级配变化。
    Abstract: Particle crushing will change the density and gradation curves of geotechnical materials, and then influence their stress-strain behavior. The proposed gradation evolution model, based on the particle breakage characteristics of natural rocks, is to obtain the information of particle breakage and gradation which is difficult to be dealt with by normal technical means during loading process. The stress parameter of the model adopts the incremental loading method, so the model can predict the evolution of gradation during experimental process. The particle breakage characteristics and model parameters are determined through the crushing tests on a single particle. The experimental data obtained from the tests show that the particle strength obeys the Weibull distribution. In addition, the grain-size distributions after crushing tests are normally distributed, and the distributions of different groups are similar. Finally, the proposed model is proved to be able to predict the gradation variation of rockfill materials correctly through comparative analysis of the calculated results and triaxial test data.
  • [1] 周成, 陈生水, 何建村, 等. 考虑土石料颗粒破碎和密度变化的次塑性本构模型建模方法[J]. 岩土力学, 2013, 34(2): 18-21.
    (ZHOU Cheng, CHEN Sheng-shui, HE Jian-cun, et al.Development of a hypo-plastic model for earth-rock dams considering rock crushing and density changing[J]. Rock and Soil Mechanics, 2013, 34(2): 18-21. (in Chinese))
    [2] 贾宇峰, 王丙申, 迟世春. 堆石料剪切过程中的颗粒破碎研究[J]. 岩土工程学报, 2015, 37(9): 1692-1697.
    (JIA Yu-feng, WANG Bing-shen, CHI Shi-chun.Particle breakage of rockfill during triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1692-1697. (in Chinese))
    [3] 刘汉龙, 秦红玉, 高玉峰, 等. 堆石粗粒料颗粒破碎试验研究[J]. 岩土力学, 2005, 26(4): 562-566.
    (LIU Han-long, QIN Hong-yu, GAO Yu-feng, et al.Experimental study on particle breakage of rockfill and coarse aggregates[J]. Rock and Soil Mechanics, 2005, 26(4): 562-566. (in Chinese))
    [4] INDRARATNA B, SUN Q D, NIMBALKAR S.Observed and predicted behavior of rail ballast under monotonic loading capturing particle breakage[J]. Canadian Geotechnical Journal, 2015, 52(1): 73-86.
    [5] 刘恩龙, 覃燕林, 陈生水, 等. 堆石料的临界状态探讨[J]. 水利学报, 2012, 43(5): 505-511.
    (LIU En-long, TAN Yan-lin, CHEN Sheng-shui, et al.Investigation on critical state of rockfill materials[J]. Journal of Hydraulic Engineering, 2012, 43(5): 505-511. (in Chinese))
    [6] UENG T S, CHEN T J.Energy aspects of particle breakage in drained shear of sands[J]. Géotechnique, 2000, 50(1): 65-72.
    [7] MCDOWELL G R, BOLTON M D.On the micromechanics of crushable aggregates[J]. Géotechnique, 1998, 48(5): 667-679.
    [8] OZKAN G, ORTOLEVA P J.Evolution of the gouge particle size distribution: a Markov model[J]. Pure and Applied Geophysics, 2000, 157(3): 449-468.
    [9] 童晨曦, 张升, 李希, 等. 基于Markov链的岩土材料颗粒破碎演化规律研究[J]. 岩土工程学报, 2015, 37(5): 870-877.
    (TONG Chen-xi, ZHANG Sheng, LI Xi, et al.Evolution of geotechnical materials based on Markov chain considering particle crushing[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 870-877. (in Chinese))
    [10] SUN Y F, XIAO Y, JU W.Bounding surface model for ballast with additional attention on the evolution of particle size distribution[J]. Science China (Technological Sciences), 2014, 57(7): 1352-1360.
    [11] 迟世春, 王峰, 贾宇峰, 等. 考虑细观单粒强度的堆石料破碎特性研究[J]. 岩土工程学报, 2015, 37(10): 1780-1785.
    (CHI Shi-chun, WANG Feng, JIA Yu-feng, et al.Modeling particle breakage of rockfill materials based on single particle strength[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1780-1785. (in Chinese))
    [12] LOBO-GUERRERO S, VALLEJO L E.Application of Weibull statistics to the tensile strength of rock aggregates[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(6): 786-790.
    [13] NAKATA Y, HYDE A F L, HYODO M, et al. A probabilistic approach to sand particle crushing in the triaxial test[J]. Géotechnique, 1999, 49(5): 567-583.
    [14] 梁军, 刘汉龙, 高玉峰. 堆石蠕变机理分析与颗粒破碎特性研究[J]. 岩土力学, 2003, 24(3): 479-483.
    (LIANG Jun, LIU Han-long, GAO Yu-fong.Creep mechanism and breakage behavior of rockfill[J]. Rock and Soil Mechanics, 2003, 24(3): 479-483. (in Chinese))
    [15] DAOUADJI A, HICHER P Y.An enhanced constitutive model for crushable granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(6): 555-580.
    [16] SAMMIS C, KING G, BIEGEL R.The kinematics of gouge deformation[J]. Pure and Applied Geophysics, 1987, 125(5): 777-812.
    [17] WOOD D M, MAEDA K.Changing grading of soil: effect on critical states[J]. Acta Geotechnica, 2008, 3(1): 3-14.
    [18] TSOUNGUI O, VALLET D, CHARMET J C.Numerical model of crushing of grains inside two-dimensional granular materials[J]. Powder Technology, 1999, 105(1): 190-198.
    [19] MCDOWELL G R, DE BONO J P. On the micro mechanics of one-dimensional normal compression[J]. Géotechnique, 2013, 63(11): 895-908.
    [20] MAJMUDAR T S, BEHRINGER R P.Contact force measurement and stress-induced anisotropy in granular materials[J]. Nature, 2005, 435(7045): 1079-1082.
    [21] JI S Y.Probability analysis of contact forces in quasi-slid -liquid phase transition of granular shear flow[J]. Science China (Physics, Mechanics & Astronomy), 2013, 56(2): 395-403.
    [22] 孙其诚, 王光谦. 静态堆积颗粒中的力链分布[J]. 物理学报, 2008, 57(8): 4667-4674.
    (SUN Qi-cheng, WANG Guang-qian.Force distribution in static granular matter in two dimensions[J]. Acta Physical Sinica, 2008, 57(8): 4667-4674. (in Chinese))
  • 期刊类型引用(8)

    1. 杨星,旷杜敏,粟劲苍. 钙质砂颗粒破碎演化规律和预测模型研究. 湘潭大学学报(自然科学版). 2025(02): 108-120 . 百度学术
    2. 蔡沛辰,毛雪松,刘云龙,王悦月,吴谦. 再生填料单颗粒破碎-强度-尺寸-形态效应研究. 中国公路学报. 2025(04): 16-32 . 百度学术
    3. 张超,娄澳庆,俞缙,朱东平,徐赞,曹文贵. 土石混合料大型三轴剪切力学特性的间断级配效应. 岩石力学与工程学报. 2025(05): 1300-1312 . 百度学术
    4. 赵飞翔,迟世春. 基于离散元的碎片尺寸随机的颗粒破碎模拟方法. 东北大学学报(自然科学版). 2023(03): 408-414 . 百度学术
    5. 孙越,肖杨,周伟,刘汉龙. 钙质砂和石英砂压缩下的颗粒破碎与形状演化. 岩土工程学报. 2022(06): 1061-1068 . 本站查看
    6. 唐怡,邱珍锋,邓文杰. 考虑单颗粒破碎模式的破碎特征与强度特性研究. 水利水电技术(中英文). 2022(07): 169-179 . 百度学术
    7. 王嘉璐,张升,童晨曦,戴邵衡,黎章. 基于染色标定的钙质砂颗粒破碎级配转移矩阵试验研究. 岩土力学. 2022(08): 2222-2232 . 百度学术
    8. 李学丰,李瑞杰,张军辉,王奇. 堆石料三维强度特性. 中国公路学报. 2020(09): 54-62 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  244
  • HTML全文浏览量:  4
  • PDF下载量:  183
  • 被引次数: 23
出版历程
  • 收稿日期:  2018-11-20
  • 发布日期:  2019-09-24

目录

    /

    返回文章
    返回