• Scopus数据库收录期刊
  • 中国科技核心期刊
  • 全国中文核心期刊
  • 美国工程索引(EI)收录期刊

大厚度湿陷性黄土隧道现场浸水试验研究

邵生俊, 李骏, 李国良, 王新东, 靳宝成, 邵帅

邵生俊, 李骏, 李国良, 王新东, 靳宝成, 邵帅. 大厚度湿陷性黄土隧道现场浸水试验研究[J]. 岩土工程学报, 2018, 40(8): 1395-1404. DOI: 10.11779/CJGE201808004
引用本文: 邵生俊, 李骏, 李国良, 王新东, 靳宝成, 邵帅. 大厚度湿陷性黄土隧道现场浸水试验研究[J]. 岩土工程学报, 2018, 40(8): 1395-1404. DOI: 10.11779/CJGE201808004
SHAO Sheng-jun, LI Jun, LI Guo-liang, WANG Xin-dong, JIN Bao-cheng, SHAO Shuai. Field immersion tests on tunnel in large-thickness collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1395-1404. DOI: 10.11779/CJGE201808004
Citation: SHAO Sheng-jun, LI Jun, LI Guo-liang, WANG Xin-dong, JIN Bao-cheng, SHAO Shuai. Field immersion tests on tunnel in large-thickness collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1395-1404. DOI: 10.11779/CJGE201808004

大厚度湿陷性黄土隧道现场浸水试验研究  English Version

基金项目: 国家自然科学基金项目(41272320,11572245)
详细信息
    作者简介:

    邵生俊(1964- ),男,教授,博士生导师,主要从事土动力学和黄土力学等方面的教学及科研工作。E-mail:sjshao@xaut.edu.cn。

Field immersion tests on tunnel in large-thickness collapsible loess

  • 摘要: 对于穿越大厚度湿陷性黄土地层的隧道,其围岩湿陷变形会威胁隧道结构的稳定性。为了分析黄土围岩湿陷变形对隧道衬砌结构的影响机制,选取典型大厚度湿陷性黄土隧道场地,通过开展隧道场地地面浸水试坑试验及隧道仰拱浸水试验,测试了地面入渗和隧道基底入渗过程中不同埋深地层的湿陷沉降变形及地基的沉降变形、入渗过程中围岩的体积含水率变化分布、试坑周边地层的侧向位移、衬砌结构接触压力和轴力,研究了既有隧道黄土地层的湿陷变形特性及水分运移规律、隧道结构力学响应。结果表明,隧道开挖、衬砌作用扰动黄土结构,增大了围岩及深层黄土的渗透性;与天然黄土场地试坑浸水入渗比较,增大了竖向浸水范围,减小了水平向浸水范围。隧道围岩湿陷变形改变了围岩与衬砌结构的相互作用性状。围岩湿陷和地基软化作用增大了二次衬砌结构侧墙竖向荷载和侧墙围岩的挤压作用,引起拱脚地基承载力减小和沉降变形发展,拱顶、拱肩接触面呈受拉状态;仰拱中部地基土的抗力作用抑制其沉降变形,从而使得拱脚和仰拱中部出现显著的沉降差,导致仰拱混凝土开裂,形成纵向裂缝。此外,浸水范围内黄土的湿陷变形不仅引起竖向沉降变形,还会引起周围土体产生侧向水平位移;洞口边坡场地黄土的湿陷性和地层湿陷变形差异较大,反映了黄土山岭黄土场地地层条件复杂多变的特征。
    Abstract: The stability of tunnel structure in large-thickness collapsible loess strata will be threatened by the potential collapse deformation of loess. In order to explore the mechanism of tunnel lining structure influenced by collapse deformation of the surrounding rock, field immersion tests are conducted on tunnel construction site of collapsible loess with large thickness. A series of parameters such as the volumetric water content of soil at different depths, collapse deformation of strata, settlement of tunnel foundation, lateral displacement of soil layer and stress condition of tunnel structure are measured in the infiltration process. The collapse deformation characteristics, infiltration laws of the loess site and mechanical change rules of tunnel lining structure are emphatically investigated. The results show that the depth of water infiltration at this site is much deeper than that at the natural loess site due to the greater permeability of the surrounding rock caused by tunnel excavation disturbance. The interaction between tunnel structure and surrounding rock is changed by the collapse of surrounding rock during water infiltration, such as the significant increase of the extrusion force at tunnel side wall and the vertical pressure at two flanks of tunnel inverted arch. Meanwhile, the subgrade reaction in the middle of tunnel inverted arch restrains the sedimentation of this area. A longitudinal crack formed in the middle of tunnel inverted arch is under the impact of differential settlement. In addition, with the increase of water infiltration depth, the collapse deformation of loess stratum is released layer after layer, and it includes the vertical and horizontal deformations. The collapsible loess site with large thickness in mountainous area has the complex characteristics of stratum soils, which is reflected by the tremendous difference of collapsible deformation in the immersion scope.
  • [1] 邵生俊, 杨春鸣, 焦阳阳, 等. 湿陷性黄土隧道工程性质分析[J]. 岩土工程学报, 2013, 35(9): 1580-1590.
    (SHAO Sheng-jun, YANG Chun-ming, JIAO Yang-yang, et al.Engineering properties of collapsible loess tunnel[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1580-1590. (in Chinese))
    [2] 赵勇, 李国良, 喻渝. 黄土隧道工程[M]. 北京: 中国铁道出版社, 2011.
    (ZHAO Yong, LI Guo-liang, YU Yu.Loess tunnel engineering[M]. Beijing: China Railway Publishing House, 2011. (in Chinese))
    [3] GB50025—2004 湿陷性黄土地区建筑规范[S]. 2004.
    (GB50025—2004 Code for building construction in collapsible loess regions[S]. 2004. (in Chinese))
    [4] 黄雪峰, 陈正汉, 哈双, 等. 大厚度自重湿陷性黄土场地湿陷变形特征的大型现场浸水试验研究[J]. 岩土工程学报, 2006, 28(3): 382-389.
    (HUANG Xue-feng, CHEN Zheng-han, HA Shuang, et al.Large area field immersion tests on characteristics of deformation of self weight collapse loess under overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 382-389. (in Chinese))
    [5] 姚志华, 黄雪峰, 陈正汉, 等. 兰州地区大厚度自重湿陷性黄土场地浸水试验综合观测研究[J]. 岩土工程学报, 2012, 34(1): 65-74.
    (YAO Zhi-hua, HUANG Xue-feng, CHEN Zheng-han, et al.Comprehensive soaking tests on self-weight collapse loess with heavy section in Lanzhou region[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 65-74. (in Chinese))
    [6] 王小军, 米维军, 熊治文, 等. 郑西客运专线黄土地基湿陷性现场浸水试验研究[J]. 铁道学报, 2012, 34(1): 83-90.
    (WANG Xiao-jun, MI Wei-jun, XIONG Zhi-wen, et al.Water immersion field tests of collapsibility of loess foundation of Zhengzhou-Xi'an passenger dedicated line[J]. Journal of The China Railway Society, 2012, 34(1): 83-90. (in Chinese))
    [7] 马闫, 王家鼎, 彭淑君, 等. 大厚度黄土自重湿陷性场地浸水湿陷变形特征研究[J]. 岩土工程学报, 2014, 36(3): 537-546.
    (MA Yan, WANG Jia-ding, PENG Shu-jun, et al.Immersion tests on characteristics of deformation of self-weight collapsible loess under overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 537-546. (in Chinese))
    [8] 邵生俊, 李骏, 李国良, 等. 大厚度自重湿陷黄土湿陷变形评价方法的研究[J]. 岩土工程学报, 2015, 37(6): 965-978.
    (SHAO Sheng-jun, LI Jun, LI Guo-liang, et al.Evaluation method for self-weight collapsible deformation of large thickness loess foundation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 965-978. (in Chinese))
    [9] 姚志华, 黄雪峰, 陈正汉, 等. 关于黄土湿陷性评价和剩余湿陷量的新认识[J]. 岩土力学, 2014, 35(4): 998-1006.
    (YAO Zhi-hua, HUANG Xue-feng, CHEN Zheng-han, et al.New recognition of collapsibility evaluation and remnant collapse of loess[J]. Rock and Soil Mechanics, 2014, 35(4): 998-1006. (in Chinese))
    [10] 黄雪峰, 杨校辉. 湿陷性黄土现场浸水试验研究进展[J].岩土力学, 2013, 34(增刊2): 222-228.
    (HUANG Xue-feng, YANG Xiao-hui.A study progress on in-situ soaking test on collapsible loess[J]. Rock and Soil Mechanics,2013, 34(S2): 222-228. (in Chinese))
    [11] 邵生俊, 李骏, 邵将, 等. 大厚度湿陷性黄土地层的现场砂井浸水试验研究[J]. 岩土工程学报, 2016, 38(9): 1549-1558.
    (SHAO Sheng-jun, LI Jun, SHAO Jiang, et al.In-situ sand well immersion tests on self-weight collapsible loess site with large depth[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1549-1558. (in Chinese))
    [12] 邵生俊, 陈菲, 邵帅. 黄土隧道地基湿陷变形评价方法探讨[J]. 岩石力学与工程学报, 2017, 36(5): 1289-1300.
    (SHAO Sheng-jun, CHEN Fei, SHAO Shuai.Collapse deformation evaluation method of loess tunnel foundation[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5): 1289-1300. (in Chinese))
    [13] 李国良, 邵生俊, 靳宝成, 等. 黄土隧道地基的湿陷性问题研究[J].铁道工程学报, 2015(12): 12-16.
    (LI Guo-liang, SHAO Sheng-jun, JIN Bao-cheng, et al.Research on the problems of collapsibility of loess tunnel foundation[J]. Journal of Railway Engineering Society, 2015(12): 12-16. (in Chinese))
    [14] 范文, 邵生俊, 杨春鸣, 等. 黄土隧道地基湿陷压缩应力的计算方法[J]. 岩土工程学报, 2015, 37(增刊2): 80-85.
    (FAN Wen, SHAO Sheng-jun, YANG Chun-ming, et al.Method for calculating collapsible compressive stress of loess tunnel foundation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 80-85. (in Chinese))
    [15] 翁效林, 王俊, 王立新, 等. 黄土地层浸水湿陷对地铁隧道影响试验研究[J]. 岩土工程学报, 2016, 38(8): 1374-1380.
    (WENG Xiao-lin, WANG Jun, WANG Li-xin, et al.Experimental research on influence of loess collapsibility on subway tunnels[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1374-1380. (in Chinese))
计量
  • 文章访问数:  304
  • HTML全文浏览量:  13
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-10
  • 发布日期:  2018-08-24

目录

    /

    返回文章
    返回