• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SHAO Sheng-jun, LI Jun, LI Guo-liang, WANG Xin-dong, JIN Bao-cheng, SHAO Shuai. Field immersion tests on tunnel in large-thickness collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1395-1404. DOI: 10.11779/CJGE201808004
Citation: SHAO Sheng-jun, LI Jun, LI Guo-liang, WANG Xin-dong, JIN Bao-cheng, SHAO Shuai. Field immersion tests on tunnel in large-thickness collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1395-1404. DOI: 10.11779/CJGE201808004

Field immersion tests on tunnel in large-thickness collapsible loess

More Information
  • Received Date: May 10, 2017
  • Published Date: August 24, 2018
  • The stability of tunnel structure in large-thickness collapsible loess strata will be threatened by the potential collapse deformation of loess. In order to explore the mechanism of tunnel lining structure influenced by collapse deformation of the surrounding rock, field immersion tests are conducted on tunnel construction site of collapsible loess with large thickness. A series of parameters such as the volumetric water content of soil at different depths, collapse deformation of strata, settlement of tunnel foundation, lateral displacement of soil layer and stress condition of tunnel structure are measured in the infiltration process. The collapse deformation characteristics, infiltration laws of the loess site and mechanical change rules of tunnel lining structure are emphatically investigated. The results show that the depth of water infiltration at this site is much deeper than that at the natural loess site due to the greater permeability of the surrounding rock caused by tunnel excavation disturbance. The interaction between tunnel structure and surrounding rock is changed by the collapse of surrounding rock during water infiltration, such as the significant increase of the extrusion force at tunnel side wall and the vertical pressure at two flanks of tunnel inverted arch. Meanwhile, the subgrade reaction in the middle of tunnel inverted arch restrains the sedimentation of this area. A longitudinal crack formed in the middle of tunnel inverted arch is under the impact of differential settlement. In addition, with the increase of water infiltration depth, the collapse deformation of loess stratum is released layer after layer, and it includes the vertical and horizontal deformations. The collapsible loess site with large thickness in mountainous area has the complex characteristics of stratum soils, which is reflected by the tremendous difference of collapsible deformation in the immersion scope.
  • [1]
    邵生俊, 杨春鸣, 焦阳阳, 等. 湿陷性黄土隧道工程性质分析[J]. 岩土工程学报, 2013, 35(9): 1580-1590.
    (SHAO Sheng-jun, YANG Chun-ming, JIAO Yang-yang, et al.Engineering properties of collapsible loess tunnel[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1580-1590. (in Chinese))
    [2]
    赵勇, 李国良, 喻渝. 黄土隧道工程[M]. 北京: 中国铁道出版社, 2011.
    (ZHAO Yong, LI Guo-liang, YU Yu.Loess tunnel engineering[M]. Beijing: China Railway Publishing House, 2011. (in Chinese))
    [3]
    GB50025—2004 湿陷性黄土地区建筑规范[S]. 2004.
    (GB50025—2004 Code for building construction in collapsible loess regions[S]. 2004. (in Chinese))
    [4]
    黄雪峰, 陈正汉, 哈双, 等. 大厚度自重湿陷性黄土场地湿陷变形特征的大型现场浸水试验研究[J]. 岩土工程学报, 2006, 28(3): 382-389.
    (HUANG Xue-feng, CHEN Zheng-han, HA Shuang, et al.Large area field immersion tests on characteristics of deformation of self weight collapse loess under overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 382-389. (in Chinese))
    [5]
    姚志华, 黄雪峰, 陈正汉, 等. 兰州地区大厚度自重湿陷性黄土场地浸水试验综合观测研究[J]. 岩土工程学报, 2012, 34(1): 65-74.
    (YAO Zhi-hua, HUANG Xue-feng, CHEN Zheng-han, et al.Comprehensive soaking tests on self-weight collapse loess with heavy section in Lanzhou region[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 65-74. (in Chinese))
    [6]
    王小军, 米维军, 熊治文, 等. 郑西客运专线黄土地基湿陷性现场浸水试验研究[J]. 铁道学报, 2012, 34(1): 83-90.
    (WANG Xiao-jun, MI Wei-jun, XIONG Zhi-wen, et al.Water immersion field tests of collapsibility of loess foundation of Zhengzhou-Xi'an passenger dedicated line[J]. Journal of The China Railway Society, 2012, 34(1): 83-90. (in Chinese))
    [7]
    马闫, 王家鼎, 彭淑君, 等. 大厚度黄土自重湿陷性场地浸水湿陷变形特征研究[J]. 岩土工程学报, 2014, 36(3): 537-546.
    (MA Yan, WANG Jia-ding, PENG Shu-jun, et al.Immersion tests on characteristics of deformation of self-weight collapsible loess under overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 537-546. (in Chinese))
    [8]
    邵生俊, 李骏, 李国良, 等. 大厚度自重湿陷黄土湿陷变形评价方法的研究[J]. 岩土工程学报, 2015, 37(6): 965-978.
    (SHAO Sheng-jun, LI Jun, LI Guo-liang, et al.Evaluation method for self-weight collapsible deformation of large thickness loess foundation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 965-978. (in Chinese))
    [9]
    姚志华, 黄雪峰, 陈正汉, 等. 关于黄土湿陷性评价和剩余湿陷量的新认识[J]. 岩土力学, 2014, 35(4): 998-1006.
    (YAO Zhi-hua, HUANG Xue-feng, CHEN Zheng-han, et al.New recognition of collapsibility evaluation and remnant collapse of loess[J]. Rock and Soil Mechanics, 2014, 35(4): 998-1006. (in Chinese))
    [10]
    黄雪峰, 杨校辉. 湿陷性黄土现场浸水试验研究进展[J].岩土力学, 2013, 34(增刊2): 222-228.
    (HUANG Xue-feng, YANG Xiao-hui.A study progress on in-situ soaking test on collapsible loess[J]. Rock and Soil Mechanics,2013, 34(S2): 222-228. (in Chinese))
    [11]
    邵生俊, 李骏, 邵将, 等. 大厚度湿陷性黄土地层的现场砂井浸水试验研究[J]. 岩土工程学报, 2016, 38(9): 1549-1558.
    (SHAO Sheng-jun, LI Jun, SHAO Jiang, et al.In-situ sand well immersion tests on self-weight collapsible loess site with large depth[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1549-1558. (in Chinese))
    [12]
    邵生俊, 陈菲, 邵帅. 黄土隧道地基湿陷变形评价方法探讨[J]. 岩石力学与工程学报, 2017, 36(5): 1289-1300.
    (SHAO Sheng-jun, CHEN Fei, SHAO Shuai.Collapse deformation evaluation method of loess tunnel foundation[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5): 1289-1300. (in Chinese))
    [13]
    李国良, 邵生俊, 靳宝成, 等. 黄土隧道地基的湿陷性问题研究[J].铁道工程学报, 2015(12): 12-16.
    (LI Guo-liang, SHAO Sheng-jun, JIN Bao-cheng, et al.Research on the problems of collapsibility of loess tunnel foundation[J]. Journal of Railway Engineering Society, 2015(12): 12-16. (in Chinese))
    [14]
    范文, 邵生俊, 杨春鸣, 等. 黄土隧道地基湿陷压缩应力的计算方法[J]. 岩土工程学报, 2015, 37(增刊2): 80-85.
    (FAN Wen, SHAO Sheng-jun, YANG Chun-ming, et al.Method for calculating collapsible compressive stress of loess tunnel foundation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 80-85. (in Chinese))
    [15]
    翁效林, 王俊, 王立新, 等. 黄土地层浸水湿陷对地铁隧道影响试验研究[J]. 岩土工程学报, 2016, 38(8): 1374-1380.
    (WENG Xiao-lin, WANG Jun, WANG Li-xin, et al.Experimental research on influence of loess collapsibility on subway tunnels[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1374-1380. (in Chinese))
  • Related Articles

    [1]LIANG Ming, PENG Hao, XIE Weiwei, HAN Yu, SONG Guanxian, ZHU Menglong, HUANG Nenghao, ZHOU Banghong, LU Zhenlong. Application of automatic interpretation technology of tunnel rock mass integrity based on digital drilling and multi-scale model fusion[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 396-405. DOI: 10.11779/CJGE20221141
    [2]YAN Changbin, GAO Ziang, YAO Xitong, WANG Hejian, YANG Fengwei, YANG Jihua, LU Gaoming. Weighted random forest prediction model for TBM advance rate considering uncertainty[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2575-2583. DOI: 10.11779/CJGE20221139
    [3]CAO Rui-lang, WANG Yu-jie, ZHAO Yu-fei, WANG Xiao-gang, HE Sun-wen, PENG Lin-jun. In-situ tests on quantitative evaluation of rock mass integrity based on drilling process index[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 679-687. DOI: 10.11779/CJGE202104010
    [4]RONG Chui-qiang, ZHAO Xiao-hua. Three-dimensional interference sources and optimal sampling location of piles utilizing reflected wave method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1731-1738. DOI: 10.11779/CJGE201709023
    [5]HAN Zeng-qiang, WANG Chuan-ying, ZHOU Ji-fang, WU Yu-teng, HU Sheng, WANG Jin-chao. Calculation of borehole wall rock integrity based on borehole images and its application in evaluation of grouting effect in fractured rock mass[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 245-249. DOI: 10.11779/CJGE2016S2040
    [6]TAO Xia-xin, CHEN Fu, SUN Xiao-dan. Improvement of source spectrum model for synthesis of strong ground motion[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 504-507.
    [7]YAN Changgen, WU Faquan, QI Shengwen, LIU Tong, MASAKATSU Miyajima. Deformation and strength parameters and size effect of random jointed rock mass by numerical simulation[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 879-885.
    [8]LI Shaolong, YANG Jinzhong, CAI Shuying. Study on random properties of hydraulic factors in stochastic model of unsaturated flows[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1273-1276.
    [9]CHEN Jianping. 3-D net work numerical modeling technique for random discontinuities of rock mass[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 397-402.
    [10]Guo Huaizhi, Peng Dapeng. Determination of Parameters of Random FieidProperty of Materials[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(3): 79-83.
  • Cited by

    Periodical cited type(7)

    1. 徐长节,管凌霄,童立红,丁海滨. 列车荷载下高铁路基累积沉降研究综述. 华东交通大学学报. 2025(02): 1-14 .
    2. 董俊利,冷伍明,张期树,徐方,李亚峰. 新型预应力路基动力变形特性试验研究. 土木工程学报. 2024(12): 118-131 .
    3. 任连伟,李梁,王自强,邹友峰,顿志林,王树仁. 采空区场地高速铁路路基动力加载系统研发与模型试验. 煤炭学报. 2024(12): 4752-4767 .
    4. 薛凯仁,夏靖洪,刘开富. 循环荷载下桩网复合地基受力变形模型试验研究. 浙江理工大学学报(自然科学版). 2023(01): 157-166 .
    5. 王亚威. 箱式路基端承式复合地基静动力性能室内模型试验研究. 铁道建筑. 2023(10): 107-111 .
    6. 周鹏飞. X型截面现浇混凝土桩在软土上的公路施工性能. 安徽建筑. 2023(12): 150-151+174 .
    7. 陈贤可,刘海涛,吴健,刘开富. 循环荷载下桩网复合地基中桩的承载特性分析. 水利规划与设计. 2022(08): 123-127 .

    Other cited types(8)

Catalog

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return