• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
SHAO Sheng-jun, LI Jun, LI Guo-liang, WANG Xin-dong, JIN Bao-cheng, SHAO Shuai. Field immersion tests on tunnel in large-thickness collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1395-1404. DOI: 10.11779/CJGE201808004
Citation: SHAO Sheng-jun, LI Jun, LI Guo-liang, WANG Xin-dong, JIN Bao-cheng, SHAO Shuai. Field immersion tests on tunnel in large-thickness collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1395-1404. DOI: 10.11779/CJGE201808004

Field immersion tests on tunnel in large-thickness collapsible loess

More Information
  • Received Date: May 10, 2017
  • Published Date: August 24, 2018
  • The stability of tunnel structure in large-thickness collapsible loess strata will be threatened by the potential collapse deformation of loess. In order to explore the mechanism of tunnel lining structure influenced by collapse deformation of the surrounding rock, field immersion tests are conducted on tunnel construction site of collapsible loess with large thickness. A series of parameters such as the volumetric water content of soil at different depths, collapse deformation of strata, settlement of tunnel foundation, lateral displacement of soil layer and stress condition of tunnel structure are measured in the infiltration process. The collapse deformation characteristics, infiltration laws of the loess site and mechanical change rules of tunnel lining structure are emphatically investigated. The results show that the depth of water infiltration at this site is much deeper than that at the natural loess site due to the greater permeability of the surrounding rock caused by tunnel excavation disturbance. The interaction between tunnel structure and surrounding rock is changed by the collapse of surrounding rock during water infiltration, such as the significant increase of the extrusion force at tunnel side wall and the vertical pressure at two flanks of tunnel inverted arch. Meanwhile, the subgrade reaction in the middle of tunnel inverted arch restrains the sedimentation of this area. A longitudinal crack formed in the middle of tunnel inverted arch is under the impact of differential settlement. In addition, with the increase of water infiltration depth, the collapse deformation of loess stratum is released layer after layer, and it includes the vertical and horizontal deformations. The collapsible loess site with large thickness in mountainous area has the complex characteristics of stratum soils, which is reflected by the tremendous difference of collapsible deformation in the immersion scope.
  • [1]
    邵生俊, 杨春鸣, 焦阳阳, 等. 湿陷性黄土隧道工程性质分析[J]. 岩土工程学报, 2013, 35(9): 1580-1590.
    (SHAO Sheng-jun, YANG Chun-ming, JIAO Yang-yang, et al.Engineering properties of collapsible loess tunnel[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1580-1590. (in Chinese))
    [2]
    赵勇, 李国良, 喻渝. 黄土隧道工程[M]. 北京: 中国铁道出版社, 2011.
    (ZHAO Yong, LI Guo-liang, YU Yu.Loess tunnel engineering[M]. Beijing: China Railway Publishing House, 2011. (in Chinese))
    [3]
    GB50025—2004 湿陷性黄土地区建筑规范[S]. 2004.
    (GB50025—2004 Code for building construction in collapsible loess regions[S]. 2004. (in Chinese))
    [4]
    黄雪峰, 陈正汉, 哈双, 等. 大厚度自重湿陷性黄土场地湿陷变形特征的大型现场浸水试验研究[J]. 岩土工程学报, 2006, 28(3): 382-389.
    (HUANG Xue-feng, CHEN Zheng-han, HA Shuang, et al.Large area field immersion tests on characteristics of deformation of self weight collapse loess under overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 382-389. (in Chinese))
    [5]
    姚志华, 黄雪峰, 陈正汉, 等. 兰州地区大厚度自重湿陷性黄土场地浸水试验综合观测研究[J]. 岩土工程学报, 2012, 34(1): 65-74.
    (YAO Zhi-hua, HUANG Xue-feng, CHEN Zheng-han, et al.Comprehensive soaking tests on self-weight collapse loess with heavy section in Lanzhou region[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 65-74. (in Chinese))
    [6]
    王小军, 米维军, 熊治文, 等. 郑西客运专线黄土地基湿陷性现场浸水试验研究[J]. 铁道学报, 2012, 34(1): 83-90.
    (WANG Xiao-jun, MI Wei-jun, XIONG Zhi-wen, et al.Water immersion field tests of collapsibility of loess foundation of Zhengzhou-Xi'an passenger dedicated line[J]. Journal of The China Railway Society, 2012, 34(1): 83-90. (in Chinese))
    [7]
    马闫, 王家鼎, 彭淑君, 等. 大厚度黄土自重湿陷性场地浸水湿陷变形特征研究[J]. 岩土工程学报, 2014, 36(3): 537-546.
    (MA Yan, WANG Jia-ding, PENG Shu-jun, et al.Immersion tests on characteristics of deformation of self-weight collapsible loess under overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 537-546. (in Chinese))
    [8]
    邵生俊, 李骏, 李国良, 等. 大厚度自重湿陷黄土湿陷变形评价方法的研究[J]. 岩土工程学报, 2015, 37(6): 965-978.
    (SHAO Sheng-jun, LI Jun, LI Guo-liang, et al.Evaluation method for self-weight collapsible deformation of large thickness loess foundation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 965-978. (in Chinese))
    [9]
    姚志华, 黄雪峰, 陈正汉, 等. 关于黄土湿陷性评价和剩余湿陷量的新认识[J]. 岩土力学, 2014, 35(4): 998-1006.
    (YAO Zhi-hua, HUANG Xue-feng, CHEN Zheng-han, et al.New recognition of collapsibility evaluation and remnant collapse of loess[J]. Rock and Soil Mechanics, 2014, 35(4): 998-1006. (in Chinese))
    [10]
    黄雪峰, 杨校辉. 湿陷性黄土现场浸水试验研究进展[J].岩土力学, 2013, 34(增刊2): 222-228.
    (HUANG Xue-feng, YANG Xiao-hui.A study progress on in-situ soaking test on collapsible loess[J]. Rock and Soil Mechanics,2013, 34(S2): 222-228. (in Chinese))
    [11]
    邵生俊, 李骏, 邵将, 等. 大厚度湿陷性黄土地层的现场砂井浸水试验研究[J]. 岩土工程学报, 2016, 38(9): 1549-1558.
    (SHAO Sheng-jun, LI Jun, SHAO Jiang, et al.In-situ sand well immersion tests on self-weight collapsible loess site with large depth[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1549-1558. (in Chinese))
    [12]
    邵生俊, 陈菲, 邵帅. 黄土隧道地基湿陷变形评价方法探讨[J]. 岩石力学与工程学报, 2017, 36(5): 1289-1300.
    (SHAO Sheng-jun, CHEN Fei, SHAO Shuai.Collapse deformation evaluation method of loess tunnel foundation[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5): 1289-1300. (in Chinese))
    [13]
    李国良, 邵生俊, 靳宝成, 等. 黄土隧道地基的湿陷性问题研究[J].铁道工程学报, 2015(12): 12-16.
    (LI Guo-liang, SHAO Sheng-jun, JIN Bao-cheng, et al.Research on the problems of collapsibility of loess tunnel foundation[J]. Journal of Railway Engineering Society, 2015(12): 12-16. (in Chinese))
    [14]
    范文, 邵生俊, 杨春鸣, 等. 黄土隧道地基湿陷压缩应力的计算方法[J]. 岩土工程学报, 2015, 37(增刊2): 80-85.
    (FAN Wen, SHAO Sheng-jun, YANG Chun-ming, et al.Method for calculating collapsible compressive stress of loess tunnel foundation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 80-85. (in Chinese))
    [15]
    翁效林, 王俊, 王立新, 等. 黄土地层浸水湿陷对地铁隧道影响试验研究[J]. 岩土工程学报, 2016, 38(8): 1374-1380.
    (WENG Xiao-lin, WANG Jun, WANG Li-xin, et al.Experimental research on influence of loess collapsibility on subway tunnels[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1374-1380. (in Chinese))
  • Cited by

    Periodical cited type(9)

    1. 梁喜凤,史延楠,秦叶波,姚莹,张慧,王永维. 不同含水率与静置时间下滩涂土壤流变特性试验. 农业工程学报. 2024(01): 182-190 .
    2. 陈涛. 充分利用海洋环境提升声呐装备性能的研究. 数字海洋与水下攻防. 2024(02): 156-163 .
    3. 张少雄,宋涛,郝鑫平,张力霆,陈剑刚. 赤泥浆体流变特性和流变模型适用性研究. 三峡大学学报(自然科学版). 2023(01): 48-53 .
    4. 梁志超,张爱军,任文渊,胡海军,王毓国,李双村. 不同含水率高易溶盐含量的伊犁黄土流变特性. 农业工程学报. 2023(05): 90-99 .
    5. 刘杰锋,李飒,段贵娟,王奕霖. 稳态剪切条件下中国南海软黏土的相态转变特性及流变模型. 岩土力学. 2023(S1): 341-349 .
    6. 张博珊,王辉,陈熹. 一种考虑固相浓度作用的改进泥浆流变模型. 土木工程学报. 2023(S1): 134-141 .
    7. 李家平,朱克超,周旋,陈衍力,李昱洋,马雯波. 深海富稀土沉积物的流变特性研究. 岩土力学. 2022(S1): 348-356 .
    8. 刘晓磊,陈安铎,张红,陆杨,马路宽,贾永刚. 黄河水下三角洲高浓度黏性泥沙流变特性及其影响因素. 海洋学报. 2021(05): 127-134 .
    9. 程升,朱超祁,单红仙,刘晓磊,贾永刚. 基于离散元的南海软黏土剪切变形模拟. 科学技术与工程. 2020(09): 3707-3714 .

    Other cited types(10)

Catalog

    Article views (305) PDF downloads (206) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return