• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

高含水率疏浚泥轴对称大应变固结模型

曹玉鹏, 孙宗军, 丁建文, 吉锋

曹玉鹏, 孙宗军, 丁建文, 吉锋. 高含水率疏浚泥轴对称大应变固结模型[J]. 岩土工程学报, 2016, 38(10): 1904-1910. DOI: 10.11779/CJGE201610021
引用本文: 曹玉鹏, 孙宗军, 丁建文, 吉锋. 高含水率疏浚泥轴对称大应变固结模型[J]. 岩土工程学报, 2016, 38(10): 1904-1910. DOI: 10.11779/CJGE201610021
CAO Yu-peng, SUN Zong-jun, DING Jian-wen, JI Feng. Axisymmetric large-strain consolidation model for dredged clay with high water content[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1904-1910. DOI: 10.11779/CJGE201610021
Citation: CAO Yu-peng, SUN Zong-jun, DING Jian-wen, JI Feng. Axisymmetric large-strain consolidation model for dredged clay with high water content[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1904-1910. DOI: 10.11779/CJGE201610021

高含水率疏浚泥轴对称大应变固结模型  English Version

基金项目: 山东科技大学人才引进科研启动基金项目(2016RCJJ021); 国家自然科学基金项目(51608312,51178107,51378118); “十二五”国家科技支撑计划项目(2015BAB07B06); 水利部公益性行业专项经费项目(201401006)
详细信息
    作者简介:

    曹玉鹏(1985- ),男,讲师,主要从事淤泥大应变固结及软基处理方面的研究。E-mail: paradise456917@163.com。

Axisymmetric large-strain consolidation model for dredged clay with high water content

  • 摘要: 高含水率疏浚泥在外加荷载作用下通常产生大应变固结变形,不适用于传统的Barron轴对称小应变固结理论。为此,基于Gibson一维大应变固结理论和Hansbo径向固结理论,摒弃小应变假定,考虑高含水率疏浚泥的材料和几何非线性、径竖向渗流等因素,建立了等应变条件下以孔隙比为变量的轴对称大应变固结模型ALSC,Gibson、Hansbo、Kjellman等建立的固结方程是该模型的特例。基于有限差分法,编制了计算程序,进行了ALSC模型与小应变模型的数值模拟,验证了ALSC的有效性。研究结果表明:土体变形较小时,ALSC模型与Barron模型计算的固结度和超静孔压数值基本吻合;土体变形较大时,ALSC模型与“Barron+Terzaghi”理论计算的最终沉降量和固结速率取决于土体的固结参数;当Cc/Ck=1时,ALSC模型的最终沉降量小于“Barron+Terzaghi”理论,但二者固结速率相当;当压缩系数av保持不变,ALSC模型(Ck=1)与“Barron+ Terzaghi”相比,最终沉降量大,固结速率慢。
    Abstract: Large strain generally occurs in dredged clay with high water content under external loading. The traditional axisymmetric small-strain consolidation theory developed by Barron is no longer applicable. Based on the Gibson large-strain consolidation theory and the Hansbo equal-strain consolidation theory, the axisymmetric large strain consolidation (ALSC) model is established under equal strain. ALSC accounts for radial and vertical flows and variation of compressibility and permeability of dredged clay with high water content. The equations established by Gibson, Hansbo and Kjellman are the special cases of ALSC. Based on the finite difference method, the calculation program for ALSC is compiled. The ALSC model and the small-strain model are simulated, and the validity of ALSC is verified. The results show that when the soil deformation is small, the predicted consolidation degree and the excess pore water pressure results of ALSC model are in good agreement with the Barron ones. When the soil deformation is large, the final settlement and consolidation rate of ALSC model and “Barron+Terzaghi” model depend on soil parameters. When Cc/Ck=1, the final settlement of ALSC model is less than that of “Barron+Terzaghi” model, but the consolidation rate is relatively the same. If the compression coefficient av remains unchanged during consolidation process, the final settlement is larger but the consolidation rate is slower for ALSC model (Ck =1) than the ones for “Barron+ Terzaghi” model.
  • [1] 徐 元. 港口建设与疏浚之间关系浅议——兼谈第16届世界疏浚大会有关情况[J]. 中国港湾建设, 2001(6): 65-68. (XU Yuan. A preliminary study on relationship between port construction and dredging—with an introduction to related subjects of 16th world dredging congress[J]. China Harbour Engineering, 2001(6): 65-68. (in Chinese))
    [2] 程万钊. 吹填淤泥真空预压快速处理技术研究[D]. 南京:南京水利科学研究院, 2010. (CHENG Wan-zhao. Research on fast-processing vacuum preloading technology of hydraulic filled mud[D]. Nanjing: Nanjing Hydraulic Research Institute, 2010. (in Chinese))
    [3] 董志良, 张功新, 周 琦, 等. 天津滨海新区吹填造陆浅层超软土加固技术研发及应用[J]. 岩石力学与工程学报, 2011, 30(5): 1073-1080. (DONG Zhi-liang, ZHANG Gong-xin, ZHOU Qi, et al. Research and application of improvement technology of shallow ultra-soft soil formed by hydraulic reclamation in Tianjin Binhai New Area[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 1073-1080. (in Chinese))
    [4] 江辉煌. 砂井处理超软地基的固结计算[D]. 北京: 中国铁道科学研究院, 2009. (JIANG Hui-huang. Consolidation calculation of super-soft ground with vertical drains[D]. Beijing: China Academy of Railway Sciences, 2009. (in Chinese))
    [5] BARRON R A. Consolidation of fine grained soils by drain wells[J]. Transactions of American Society for Civil Engineers, 1948, 113: 718-724.
    [6] YOSHIKUNI H, NAKANODO H. Consolidation of soils by vertical drain wells with finite permeability[J]. Soils and Foundations, 1974, 14(2): 35-46.
    [7] HANSBO S. Consolidation of fine-grained soils by prefabricated drains[C]// Proceedings of 10th International Conference on Soil Mechanics and Foundation Engineering. Rotterdam/ Stockholm: Balkema, 1981, 3: 677-682.
    [8] 谢康和, 曾国熙. 等应变条件下的砂井地基固结解析解理论[J]. 岩土工程学报, 1989, 21(2): 3-17. (XIE Kang-he, ZENG Guo-xi. Consolidation theories for drain wells under equal strain condition[J]. Chinese Journal of Geotechnical Engineering, 1989, 21(2): 3-17. (in Chinese))
    [9] ONOUE A. Consolidation by vertical drains taking well resistance and smear into consideration[J]. Soils and Foundations, 1988, 28(4): 165-174.
    [10] LEKHA K R, KRISHNASWAMY N R, BASAK P. Consolidation of clay by sand drain under time-dependent loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(1): 91-94.
    [11] INDRARATNA B, RUJIKIATKAMJORN C, SATHANAN- THAN I. Radial consolidation of clay using compressibility indices and varying horizontal permeability[J]. Canadian Geotechinical Journal, 2005, 42: 1330-1341.
    [12] 江辉煌, 赵有明, 刘国楠, 等. 砂井地基的大变形固结[J]. 岩土工程学报, 2011, 33(2): 302-308. (JIANG Hui-huang, ZHAO You-ming, LIU Guo-nan, et al. Large strain consolidation of soft ground with vertical drains [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 302-308. (in Chinese))
    [13] GIBSON R E, ENGLAND G L, HUSSEY M J. The theory of one-dimensional soil consolidation of saturated clays, Ⅰ. Finite nonlinear consolidation of thin homogeneous layers[J]. Géotechnique, 1967, 17(3): 261-273.
    [14] CARGILL K W. Prediction of consolidation of very soft clay [J]. Journal of Geotechnical Engineering, 1984, 110(6): 775-795.
    [15] 谢新宇. 一维大变形固结理论的研究[D]. 杭州:浙江大学, 1996. (XIE Xin-yu. On the 1-D large strain deformation consolidation theories[D]. Hangzhou: Zhejiang University, 1996. (in Chinese))
    [16] XIE K H, LEO C J. Analytical solutions of one-dimensional large strain consolidation of saturated and homogeneous clay[J]. Computers and Geotechnics, 2004, 31(4): 301-314.
    [17] FOX P J, NICOLA M D, QUIGLEY D W. Piecewise-Linear model for large strain radial consolidation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129: 940-950.
    [18] 谢康和. 砂井地基:固结理论、数值分析与优化设计[D]. 杭州: 浙江大学, 1987. (XIE Kang-he. Sand drain ground: analytical & numerical solutions of consolidation and optimal design[D]. Hangzhou: Zhejiang University, 1987. (in Chinese))
    [19] 曹玉鹏. 高含水率疏浚泥可控真空砂井大应变固结试验与模型研究[D]. 南京: 东南大学, 2013. (CAO Yu-peng. Large strain consolidation experiment and model study on dredged sludge at high water content with vertical drains by controlled vacuum pressure[D]. Nanjing: Southeast University, 2013. (in Chinese))
  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 1
出版历程
  • 收稿日期:  2015-09-24
  • 发布日期:  2016-10-24

目录

    /

    返回文章
    返回