• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
CAO Yu-peng, SUN Zong-jun, DING Jian-wen, JI Feng. Axisymmetric large-strain consolidation model for dredged clay with high water content[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1904-1910. DOI: 10.11779/CJGE201610021
Citation: CAO Yu-peng, SUN Zong-jun, DING Jian-wen, JI Feng. Axisymmetric large-strain consolidation model for dredged clay with high water content[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1904-1910. DOI: 10.11779/CJGE201610021

Axisymmetric large-strain consolidation model for dredged clay with high water content

More Information
  • Received Date: September 24, 2015
  • Published Date: October 24, 2016
  • Large strain generally occurs in dredged clay with high water content under external loading. The traditional axisymmetric small-strain consolidation theory developed by Barron is no longer applicable. Based on the Gibson large-strain consolidation theory and the Hansbo equal-strain consolidation theory, the axisymmetric large strain consolidation (ALSC) model is established under equal strain. ALSC accounts for radial and vertical flows and variation of compressibility and permeability of dredged clay with high water content. The equations established by Gibson, Hansbo and Kjellman are the special cases of ALSC. Based on the finite difference method, the calculation program for ALSC is compiled. The ALSC model and the small-strain model are simulated, and the validity of ALSC is verified. The results show that when the soil deformation is small, the predicted consolidation degree and the excess pore water pressure results of ALSC model are in good agreement with the Barron ones. When the soil deformation is large, the final settlement and consolidation rate of ALSC model and “Barron+Terzaghi” model depend on soil parameters. When Cc/Ck=1, the final settlement of ALSC model is less than that of “Barron+Terzaghi” model, but the consolidation rate is relatively the same. If the compression coefficient av remains unchanged during consolidation process, the final settlement is larger but the consolidation rate is slower for ALSC model (Ck =1) than the ones for “Barron+ Terzaghi” model.
  • [1]
    徐 元. 港口建设与疏浚之间关系浅议——兼谈第16届世界疏浚大会有关情况[J]. 中国港湾建设, 2001(6): 65-68. (XU Yuan. A preliminary study on relationship between port construction and dredging—with an introduction to related subjects of 16th world dredging congress[J]. China Harbour Engineering, 2001(6): 65-68. (in Chinese))
    [2]
    程万钊. 吹填淤泥真空预压快速处理技术研究[D]. 南京:南京水利科学研究院, 2010. (CHENG Wan-zhao. Research on fast-processing vacuum preloading technology of hydraulic filled mud[D]. Nanjing: Nanjing Hydraulic Research Institute, 2010. (in Chinese))
    [3]
    董志良, 张功新, 周 琦, 等. 天津滨海新区吹填造陆浅层超软土加固技术研发及应用[J]. 岩石力学与工程学报, 2011, 30(5): 1073-1080. (DONG Zhi-liang, ZHANG Gong-xin, ZHOU Qi, et al. Research and application of improvement technology of shallow ultra-soft soil formed by hydraulic reclamation in Tianjin Binhai New Area[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 1073-1080. (in Chinese))
    [4]
    江辉煌. 砂井处理超软地基的固结计算[D]. 北京: 中国铁道科学研究院, 2009. (JIANG Hui-huang. Consolidation calculation of super-soft ground with vertical drains[D]. Beijing: China Academy of Railway Sciences, 2009. (in Chinese))
    [5]
    BARRON R A. Consolidation of fine grained soils by drain wells[J]. Transactions of American Society for Civil Engineers, 1948, 113: 718-724.
    [6]
    YOSHIKUNI H, NAKANODO H. Consolidation of soils by vertical drain wells with finite permeability[J]. Soils and Foundations, 1974, 14(2): 35-46.
    [7]
    HANSBO S. Consolidation of fine-grained soils by prefabricated drains[C]// Proceedings of 10th International Conference on Soil Mechanics and Foundation Engineering. Rotterdam/ Stockholm: Balkema, 1981, 3: 677-682.
    [8]
    谢康和, 曾国熙. 等应变条件下的砂井地基固结解析解理论[J]. 岩土工程学报, 1989, 21(2): 3-17. (XIE Kang-he, ZENG Guo-xi. Consolidation theories for drain wells under equal strain condition[J]. Chinese Journal of Geotechnical Engineering, 1989, 21(2): 3-17. (in Chinese))
    [9]
    ONOUE A. Consolidation by vertical drains taking well resistance and smear into consideration[J]. Soils and Foundations, 1988, 28(4): 165-174.
    [10]
    LEKHA K R, KRISHNASWAMY N R, BASAK P. Consolidation of clay by sand drain under time-dependent loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(1): 91-94.
    [11]
    INDRARATNA B, RUJIKIATKAMJORN C, SATHANAN- THAN I. Radial consolidation of clay using compressibility indices and varying horizontal permeability[J]. Canadian Geotechinical Journal, 2005, 42: 1330-1341.
    [12]
    江辉煌, 赵有明, 刘国楠, 等. 砂井地基的大变形固结[J]. 岩土工程学报, 2011, 33(2): 302-308. (JIANG Hui-huang, ZHAO You-ming, LIU Guo-nan, et al. Large strain consolidation of soft ground with vertical drains [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 302-308. (in Chinese))
    [13]
    GIBSON R E, ENGLAND G L, HUSSEY M J. The theory of one-dimensional soil consolidation of saturated clays, Ⅰ. Finite nonlinear consolidation of thin homogeneous layers[J]. Géotechnique, 1967, 17(3): 261-273.
    [14]
    CARGILL K W. Prediction of consolidation of very soft clay [J]. Journal of Geotechnical Engineering, 1984, 110(6): 775-795.
    [15]
    谢新宇. 一维大变形固结理论的研究[D]. 杭州:浙江大学, 1996. (XIE Xin-yu. On the 1-D large strain deformation consolidation theories[D]. Hangzhou: Zhejiang University, 1996. (in Chinese))
    [16]
    XIE K H, LEO C J. Analytical solutions of one-dimensional large strain consolidation of saturated and homogeneous clay[J]. Computers and Geotechnics, 2004, 31(4): 301-314.
    [17]
    FOX P J, NICOLA M D, QUIGLEY D W. Piecewise-Linear model for large strain radial consolidation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129: 940-950.
    [18]
    谢康和. 砂井地基:固结理论、数值分析与优化设计[D]. 杭州: 浙江大学, 1987. (XIE Kang-he. Sand drain ground: analytical & numerical solutions of consolidation and optimal design[D]. Hangzhou: Zhejiang University, 1987. (in Chinese))
    [19]
    曹玉鹏. 高含水率疏浚泥可控真空砂井大应变固结试验与模型研究[D]. 南京: 东南大学, 2013. (CAO Yu-peng. Large strain consolidation experiment and model study on dredged sludge at high water content with vertical drains by controlled vacuum pressure[D]. Nanjing: Southeast University, 2013. (in Chinese))
  • Related Articles

    [1]CHI Shichun, WANG Tengteng, JIA Yufeng. Delayed crushing time for particles of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2602-2609. DOI: 10.11779/CJGE20230074
    [2]CHEN Zi-yu, LI Guo-ying, WEI Kuang-min, WU Li-qiang, ZHU Yu-meng. Ultimate state and probability of particle breakage for rockfill materials based on fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1192-1200. DOI: 10.11779/CJGE202107003
    [3]SUN Chuang, AO Yun-he, ZHANG Jia-ming, WANG Shuai. Particle flow of meso-fracture characteristics and macro-scale effect of granites[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1687-1695. DOI: 10.11779/CJGE202009013
    [4]XU Kun, ZHOU Wei, MA Gang. Influence of particle breakage on scale effect of filling characteristics of rockfill material[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1013-1022. DOI: 10.11779/CJGE202006004
    [5]HAN Hua-qiang, CHEN Sheng-shui, FU Hua, ZHENG Cheng-feng. Particle breakage of rockfill materials under cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1753-1760. DOI: 10.11779/CJGE201710001
    [6]CAI Zheng-yin, LI Xiao-mei, GUAN Yun-fei, HUANG Ying-hao. Particle breakage rules of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 923-929. DOI: 10.11779/CJGE201605019
    [7]CONG Yu, WANG Zai-quan, ZHENG Ying-ren, FENG Xia-ting. Experimental study on microscopic parameters of brittle materials based on particle flow theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1031-1040. DOI: 10.11779/CJGE201506009
    [8]SHAO Lei, CHI Shi-chun, WANG Zhen-xing. Rheological model for rockfill based on sub-critical crack expansion theory[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 66-75.
    [9]XIANG Xian-chao, ZHANG Hua, JIANG Guo-sheng, TU Peng-fei. Soil arching effect of anti-slide piles based on particle flow method[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 386.
    [10]ZHANG Chong, SHU Ganping. Effect of particle shape on biaxial tests simulated by particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1281-1286.
  • Cited by

    Periodical cited type(9)

    1. 张慧梅,马志敏,陈世官,王赋宇. 正交-响应面法在PBM细观参数标定中的应用. 水资源与水工程学报. 2024(02): 183-191 .
    2. 刘红帅,张东涛. 基于正交-响应面法的砂土细观参数标定. 吉林大学学报(地球科学版). 2024(04): 1280-1290 .
    3. 姜玥,邹文栋. 基于PFC~(3D)的空心圆柱灰砂岩宏细观参数相关性研究. 煤炭科学技术. 2024(10): 78-89 .
    4. 付旭,侯定贵,李茜,王林台,刘晓立. 软土蠕变颗粒流宏细观参数特征及标定方法. 土工基础. 2023(03): 501-505 .
    5. 王晋伟,迟世春,闫世豪,郭宇,周新杰. 室内缩尺级配堆石料力学参数的表征单元体积. 浙江大学学报(工学版). 2023(07): 1418-1427 .
    6. 张杰,聂如松,黄茂桐,谭永长,肖玲. 基于柔性边界的非饱和接触模型参数标定方法. 工程科学与技术. 2023(06): 132-141 .
    7. 崔熙灿,张凌凯,王建祥. 高堆石坝砂砾石料的细观参数反演及三轴试验模拟. 农业工程学报. 2022(04): 113-122 .
    8. 董建鹏,李辉. 黄土颗粒流宏细观对应关系与参数标定方法研究. 水利水电技术(中英文). 2022(04): 180-191 .
    9. 徐锦元,张政武. 可调拱梁稳定性分析. 机械研究与应用. 2021(02): 13-17 .

    Other cited types(20)

Catalog

    Article views (525) PDF downloads (261) Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return