• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑应力历史的冻土一维蠕变模型

刘萌心, 姚晓亮, 齐吉琳, 马玲

刘萌心, 姚晓亮, 齐吉琳, 马玲. 考虑应力历史的冻土一维蠕变模型[J]. 岩土工程学报, 2016, 38(5): 898-903. DOI: 10.11779/CJGE201605015
引用本文: 刘萌心, 姚晓亮, 齐吉琳, 马玲. 考虑应力历史的冻土一维蠕变模型[J]. 岩土工程学报, 2016, 38(5): 898-903. DOI: 10.11779/CJGE201605015
LIU Meng-xin, YAO Xiao-liang, QI Ji-lin, MA Ling. 1D creep model for frozen soil taking account of stress history[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 898-903. DOI: 10.11779/CJGE201605015
Citation: LIU Meng-xin, YAO Xiao-liang, QI Ji-lin, MA Ling. 1D creep model for frozen soil taking account of stress history[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 898-903. DOI: 10.11779/CJGE201605015

考虑应力历史的冻土一维蠕变模型  English Version

基金项目: 国家基础科学人才培养基金项目(J1210003/J0109); 北京市属高等学校高层次人才引进与培养计划项目(CIT&TCD20150101); 国家自然科学基金项目(41572268)
详细信息
    作者简介:

    刘萌心(1989- ),男,山东菏泽人,硕士研究生,主要从事冻土力学与寒区工程等方面的研究。E-mail: liumxvip@163.com。

    通讯作者:

    姚晓亮

  • 中图分类号: TU47

1D creep model for frozen soil taking account of stress history

  • 摘要: 受力历史是影响冻土力学行为的关键因素。引入融土中考虑应力历史的一维蠕变模型并进行了相应修正,使其能够反应温度对冻土蠕变特性的影响,通过不同温度条件下的K0加载试验获取相关模型参数,经过回归分析得到了各参数与温度的函数关系。通过对比试验和模型计算结果表明,修正后得到的冻土一维蠕变模型在预测不同温度条件下土体的蠕变发展规律时具有较好的预测精度。同时,随着施加压力的增大,该模型能够准确描述当外压力超过其历史上所受最大压力时所产生的应变急剧增长现象。因此,该模型可以作为寒区工程稳定性分析和设计的可靠依据。
    Abstract: The stress history is a key factor influencing the mechanical behavior of frozen soil. A one-dimensional creep model for unfrozen soil considering the effect of stress history is modified to describe the creep behavior of frozen soil. Model parameters are obtained from K0 tests under different temperatures. Through the regression analysis, the relationships between model parameters and temperatures are established. The comparison between the calculated and tested results indicates that the modified creep model has a good agreement with the experimental results under different temperatures. At the same time, with the increase of overloading, this model can describe the sharp change of strain when the overloading is larger than the historical largest applied stress reasonably. So, the modified model can be a useful tool for the stability analysis and design of prosects in cold regions.
  • [1] 齐吉琳, 马 巍. 冻土的力学性质及研究现状[J]. 岩土力学, 2010, 31(1): 133-143. (QI Ji-lin, MA Wei. State-of-artof research on mechanical properties of frozen soils[J]. Rock and Soil Mechanics, 2010, 31(1): 133-143. (in Chinese))
    [2] 马 巍, 王大雁. 冻土力学[M]. 北京: 科学出版社, 2014: 1-366. (MA Wei, WANG Da-yan. Frozen soil mechanics[M]. Beijing: Science Press, 2014: 1-366. (in Chinese))
    [3] 朱元林, 张家懿, 彭万巍, 等. 冻土力学[J]. 冰川冻土, 1992, 14(3): 210-217. (ZHU Yuan-lin, ZHANG Jia-yi, PENG Wan-wei, et al. Constitutive relations of frozen soil in uniaxial compression[J]. Journal of Glaciology and Geocryology, 1992, 14(3): 210-217. (in Chinese))
    [4] WANG Song-he, QI Ji-lin, YIN Zhen-yu. A simple rheological element based creep model for frozen soils[J]. Cold Regions Science and Technology, 2014(106/107): 47-54.
    [5] SAYLES F H. Tri-axial constant st rain rate tests and tri-axial creep tests on frozen Ottawa sand[C]// Proceedings of 2nd International Permafrost Conference. Russia: Yakutsk, 1973: 384-391.
    [6] FISH A M. Kinetic nature of long term strength of frozen soil [C]// Proceedings of 2nd International Symposium on Ground Freezing. Trondheim, 1980: 95-108.
    [7] VYALOV S S. The strength and creep of frozen soils and calculations for ice-soil retainingstructures[R]. US Army Cold Regions Research and Laboratory. Hanover, 1965.
    [8] LADANYI B. An engineering theory of frozen soils[J]. Canadian Geotechnical Journal, 1972, 9(1): 63-80.
    [9] VYALOV S S. Rheological fundamentals of soil mechanics[M]. Amsterdam: Elsevier, 1986: 389-390.
    [10] 苗天德, 魏雪霞, 张长庆. 冻土蠕变过程的微结构损伤理论[J]. 中国科学 (B辑), 1995, 25(3): 309-317. (MIAO Tian-de, WEI Xue-xia, ZHANG Chang-qing. Creep of frozen soil based on microstructural damage mechanics[J]. Science in China (Series B), 1995, 25(3): 309-317. (in Chinese))
    [11] HE Ping, CHENG Guo-dong, ZHU Yuan-lin. Constitutive theories on visco-elsto-plasticity and damage of frozen soil[J]. Science in China (Series D), 1999, 42: 38-43.
    [12] 胡 伟, 齐吉琳, 马 巍. 冻土前期固结压力的试验研究[J]. 岩土力学, 2009, 30(5): 1313-1316. (HU Wei, QI Ji-lin, MA Wei. Experimental research on preconsolidation pressure of frozen soil[J]. Rock and Soil Mechanics, 2009, 30(5): 1313-1316. (in Chinese))
    [13] QI Ji-lin, HU Wei, MA Wei. Experimental study of a pseudo-preconsolidation pressure in frozen soils[J]. Cold Regions Science and Technology, 2010, 60: 230-233.
    [14] BUISMAN A S K. Results of long duration settlement tests [C]// Proc 1st Int Conf Soil Mech Cambridge. MA, 1936: 103-106.
    [15] BJERRUM L. Engineering geology of Norwegian normally- consolidated marine clays as related to settlements of buildings[J]. Géotechnique, 1967, 17(2): 81-118.
    [16] GARLANGER J E. The consolidation of soils exhibiting creep under constant effective stress[J]. Géotechnique, 1972, 22(1): 71-78.
    [17] DEN HAAN E J. A compression model for non-brittle soft clays and peat[J]. Géotechnique, 1996, 46(1): 1-16.
    [18] TEZERA F A, DAVID C S, LUKAS U A, et al. Using soil freezing characteristic curve to estimatethe hydraulic conductivity function of partially frozen soils[J]. Cold Regions Science and Technology, 2012(83/84): 103-109.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-10
  • 发布日期:  2016-05-24

目录

    /

    返回文章
    返回