• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑潜水的三维地下水流半解析数值方法

徐进, 王旭东, 陈征

徐进, 王旭东, 陈征. 考虑潜水的三维地下水流半解析数值方法[J]. 岩土工程学报, 2015, 37(12): 2286-2291. DOI: 10.11779/CJGE201512019
引用本文: 徐进, 王旭东, 陈征. 考虑潜水的三维地下水流半解析数值方法[J]. 岩土工程学报, 2015, 37(12): 2286-2291. DOI: 10.11779/CJGE201512019
XU Jin, WANG Xu-dong, CHEN Zheng. Semi-analytical numerical method for three-dimensional groundwater flow considering water-table response[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2286-2291. DOI: 10.11779/CJGE201512019
Citation: XU Jin, WANG Xu-dong, CHEN Zheng. Semi-analytical numerical method for three-dimensional groundwater flow considering water-table response[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2286-2291. DOI: 10.11779/CJGE201512019

考虑潜水的三维地下水流半解析数值方法  English Version

基金项目: 国家自然科学基金项目(41272303); 江苏省2014年度普通高校研究生科研创新计划项目(KYLX_0755)
详细信息
    作者简介:

    徐 进(1982- ),男,江苏盐城人,博士,讲师,主要从事岩土工程数值计算方面的研究工作。E-mail: jinxu1031@163.com。

Semi-analytical numerical method for three-dimensional groundwater flow considering water-table response

  • 摘要: 现有地下水半解析数值方法不能应用于潜水含水层的地下水流问题。为此,基于Neuman模型提出了潜水非稳定流的半解析数值求解格式,利用伽辽金法与正交解析函数族推导了解耦形式的加权余量方程式。在编制Fortran计算程序实现数值求解的基础上,利用已有解析解验证了方法及程序的正确性,计算结果很好地反映了潜水完整井流具有的三维流动特性及潜水面滞后反应效应,而且当忽略给水度时,该方法可以退化为针对承压含水系统的已有成果。数值算例表明,半解析数值方法适用于模拟包括潜水含水层、承压含水层及弱透水层的多层结构含水层系统的地下水流问题,能够为可概化成层状含水系统的地下水开采及地面沉降等问题中三维水流模型的高效计算提供途径。
    Abstract: The existing semi-analytical numerical method can not be used to simulate unconfined flow of groundwater. Therefore, a semi-analytical numerical approach for the problems of unsteady groundwater flow in unconfined aquifers is proposed by using the Nueman's model for the response of the water table, and the decoupled weighted residual equations are derived by means of the Galerkin's method and the orthogonality of the trigonometric series. A computer program is developed for the semi-analytical numerical analysis of three-dimensional groundwater flow in unconfined aquifers, and the validities of the present method and program are verified by comparisons with the existing analytical solutions. The three-dimensional pattern of unconfined flow due to a fully penetrating well and the delayed response of the water table are studied based on the numerical results. Moreover, the proposed method can be reduced to the existing method for confined flow if the specific yield of unconfined aquifers is ignored. Finally, the applicability of the semi-analytical numerical method for simulating the three-dimensional flow in the aquifer systems consisting of an unconfined aquifer, an aquitard and a confined aquifer is demonstrated through an additional numerical application. The proposed method can provide a high efficient approach for the three-dimensional simulation of groundwater flow and land subsidence due to groundwater withdrawal in layered aquifer systems.
  • [1] 陈崇希, 裴顺平. 地下水开采-地面沉降模型研究[J].水文地质工程地质, 2001(2): 5-8. (CHEN Chong-xi, PEI Shun-ping. Research on groundwater exploitation-land subsidence model[J]. Hydrogeology and Engineering Geology, 2001(2): 5-8. (in Chinese))
    [2] 张 云, 薛禹群. 抽水地面沉降数学模型的研究现状与展望[J]. 中国地质灾害与防治学报, 2002, 13(2): 1-6. (ZHANG Yun, XUE Yu-qun. Present situation and prospect on the mathematical model of land subsidence due to pumping[J]. The Chinese Journal of Geological Hazard and Control, 2002, 13(2): 1-6. (in Chinese))
    [3] SEPÚLVEDA N. Three-dimensional flow in the storative semiconfining layers of a leaky aquifer[J]. Ground Water, 2008, 46(1): 144-155.
    [4] 叶淑君, 吴吉春, 薛禹群. 多尺度有限单元法求解非均质多孔介质中的三维地下水流问题[J]. 地球科学进展, 2004(3): 437-442. (YE Shu-jun, WU Ji-chun, Xue Yu-qun. Application of multiscale finite element method to three dimensional groundwater flow problems in heterogeneous porous media[J]. Advance in Earth Sciences, 2004(3): 437-442. (in Chinese))
    [5] 薛禹群, 叶淑君, 谢春红, 等. 多尺度有限元法在地下水模拟中的应用[J]. 水利学报, 2004(7): 7-13. (XUE Yu-qun, YE Shu-jun, XIE Chun-hong, et al. Application of multi-scale finite element method to simulation of groundwater flow[J]. Journal of Hydraulic Engineering, 2004(7): 7-13. (in Chinese))
    [6] 薛禹群, 谢春红. 地下水数值模拟[M]. 北京: 科学出版社, 2007. (XUE Yu-qun, XIE Chun-hong. Numerical simulation for groundwater[M]. Beijing: Science Press, 2007. (in Chinese))
    [7] HEMKER C J. Transient well flow in vertically heterogeneous aquifers[J]. Journal of Hydrology, 1999, 225(1/2): 1-18.
    [8] HEMKER C J. Transient well flow in layered aquifer systems: the uniform well-face drawdown solution[J]. Journal of Hydrology, 1999, 225(1/2): 19-44.
    [9] BAKKER M. An analytic, approximate method for modeling steady, three-dimensional flow to partially penetrating wells[J]. Water Resources Research, 2001, 37(5): 1301-1308.
    [10] BAKKER M, STRACK, O D L. Analytic elements for multi-aquifer flow[J]. Journal of Hydrology, 2003, 226(1/2/3/4): 119-129.
    [11] BAKKER M, KELSON V A, LUTHER K H. Multilayer analytic element modeling of radial collector wells[J]. Ground Water, 2005, 43(2): 926-934.
    [12] CHEUNG Y K, CHAKRABARTI S. Free vibration of thick, layered rectangular plates by a finite layer method[J]. Journal of Sound and Vibratio, 1972, 21(3): 277-284.
    [13] CHEUNG Y K. Finite strip method in structural mechanics[M]. New York: Pergoman Press, 1976.
    [14] 曹志远, 张佑启. 半解析数值方法[M]. 北京:国防工业出版社, 1992. (CAO zhi-yuan, CHEUNG Y K. Semi- Analytical numerical method[M]. Beijing: National Defence Industry Press, 1992. (in Chinese))
    [15] SMITH S S, ALLEN M B, PUCKETT J. The finite layer method for groundwater flow models[J]. Water Resources Research, 1992, 28(6): 1715-1722.
    [16] 王旭东, 徐 进, 诸宏博. 各向异性承压含水层地下水流半解析数值模拟[J]. 岩土工程学报, 2010, 32(9): 1334-1339. (WANG Xu-dong, XU Jin, ZHU Hong-bo. Semi- analytical numerical simulation for unsteady groundwater flows in anisotropic confined aquifers[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1334-1339. (in Chinese))
    [17] WANG Xu-dong, XU Jin, CAI Zheng-yin. Finite layer method for flow in layered radial two-zone aquifer systems[J]. Groundwater, 2012, 50(3): 348-354.
    [18] 徐 进, 王旭东, 刘运航. 地下水向水平井三维流动的有限层分析[J]. 岩土力学, 2011, 32(3): 922-926. (XU Jin, WANG Xu-dong, LIU Yun-hang. Finite layer analysis of three-dimensional groundwater flow to horizontal well[J]. Rock and Soil Mechanics, 2011, 32(3): 922-926. (in Chinese))
    [19] NEUMAN S P. Theory of flow in unconfined aquifers considering delayed response of the water table[J]. Water Resources Research, 1972, 8(4): 1031-1045.
    [20] 林志斌, 李元海, 桂常林, 等. 定流量下潜水非完整井稳定流计算方法[J]. 岩土工程学报, 2013, 35(12): 2290-2297. (LIN Zhi-bin, LI Yuan-hai, GUI Chang-lin, et al. Method for steady flow of partially penetrating well in phreatic aquifer under constant flow[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2290-2297. (in Chinese))
    [21] HANTUSH M S. Modification of the theory of leaky aquifers[J]. Journal of Geophysical Research, 1960, 65(11): 3713-3726.
计量
  • 文章访问数:  335
  • HTML全文浏览量:  4
  • PDF下载量:  283
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-21
  • 发布日期:  2015-12-19

目录

    /

    返回文章
    返回