• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

纯主应力旋转条件下饱和黏土累积变形的热力学模型分析

程晓辉, 陈志辉

程晓辉, 陈志辉. 纯主应力旋转条件下饱和黏土累积变形的热力学模型分析[J]. 岩土工程学报, 2015, 37(9): 1581-1590. DOI: 10.11779/CJGE201509004
引用本文: 程晓辉, 陈志辉. 纯主应力旋转条件下饱和黏土累积变形的热力学模型分析[J]. 岩土工程学报, 2015, 37(9): 1581-1590. DOI: 10.11779/CJGE201509004
CHENG Xiao-hui, CHEN Zhi-hui. Thermodynamic modeling of accumulated deformation of saturated clays under pure principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1581-1590. DOI: 10.11779/CJGE201509004
Citation: CHENG Xiao-hui, CHEN Zhi-hui. Thermodynamic modeling of accumulated deformation of saturated clays under pure principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1581-1590. DOI: 10.11779/CJGE201509004

纯主应力旋转条件下饱和黏土累积变形的热力学模型分析  English Version

基金项目: 清华–剑桥–麻省理工学院三校低碳大学联盟种子基金项目(2010LC002); “973”计划课题(2013CB036404)
详细信息
    作者简介:

    程晓辉(1971-),男,江苏江阴人,副教授,主要从事岩土材料和岩土力学研究。E-mail: chengxh@tsinghua.edu.cn。

Thermodynamic modeling of accumulated deformation of saturated clays under pure principal stress rotation

  • 摘要: 不同于岩土弹塑性模型和经验回归模型,提供了一个基于颗粒固体流体动力学的热力学本构模型。该模型通过对岩土颗粒固体的弹性弛豫和颗粒熵运动等耗散机制的定量描述,可以模拟土体的非线性硬化、软化等宏观力学行为,尤其适用于主应力旋转土体累积塑性应变的模拟。纯主应力旋转条件下杭州黏土的模拟结果表明:即使不改变土体的主应力大小,纯主应力方向的旋转依然会引起土体的非弹性变形的积累。在主应力旋转过程中,土体的应变方向与应力方向并不一致,存在明显的非共轴现象。并且应变峰值的出现明显落后于应力峰值,应力-应变关系曲线存在较大的滞回圈,表明纯主应力旋转过程中也存在能量耗散,并非完全弹性过程。模型分析结果符合现有的试验结论。
    Abstract: In contrast with elasto-plastic and empirically regressed models for soils, a novel thermodynamic constitutive model is proposed based on the granular solid hydrodynamics. Two energy dissipation mechanisms of elastic relaxation and granular entropy movement are mathematically described, which allows for the modeling of non-linear hardening and softening behaviors of soils and the modeling of accumulated plastic deformation due to the pure rotation of principal stresses in particular. The simulated results for Hangzhou clay indicate that the pure principal stress rotation can also cause inelastic deformation accumulation without any changes of principal stresses. During the rotation of principal stresses, the directions of principal strains do not coincide with the ones of the principal stresses, which is a typically non-coaxial behavior. The strain peaks fall behind the stress peaks. There exists a stress-strain hysteresis loop during the rotation of principal stresses, and the energy dissipation and non-elastic process should happen. All model results fairly fit the laboratory data.
  • [1] MATSOUKA H, KOYAMA H, YAMAZAKI H. A constitutive equation for sands and its application to analyses of rotational stress paths and liquefaction resistance[J]. Soils and Foundations, 1985, 25(1): 27-42.
    [2] MATSOUKA H, SAKAKIBARA K. A constitutive model for sands and clays evaluating principal stress rotation [J]. Soils and Foundations, 1987, 27(4): 73-88.
    [3] MATSOUKA H, SUZUKI Y, MURATA T. A constitutive model for soils evaluating principal stress rotation and its application to some deformation problems[J]. Soils and Foundations, 1990, 30(1): 142-154.
    [4] YANG Z X, LI X S, YANG J. Undrained anisotropy and rotational shear in granular soil[J]. Géotechnique, 2007, 57(4): 378-384.
    [5] SYMES M J, GENS A, HIGHT D W. Undrained anisotropy and principal stress rotation in saturated sand[J]. Géotechnique, 1984, 34(1): 11-27.
    [6] NAKATA Y, HYODO M, MURATA H, et al. Flow deformation of sands subjected to principal stress axes rotation [J]. Soils and Foundations, 1998, 38(2): 115-128.
    [7] MIURA K, MIURA S, TOKI S. Deformation behavior of anisotropic dense sand under principal stress axes rotation[J]. Soils and Foundations, 1986, 26(1): 36-52.
    [8] 严佳佳, 周 建, 龚晓南, 等. 主应力轴纯旋转条件下原状黏土变形特性研究[J]. 岩土工程学报, 2014, 36(3): 474-481. (YAN Jia-jia, ZHOU Jian, GONG Xiao-nan, et al. Deformation behavior of intact clay under pure principal stress rotation [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 474-481. (in Chinese))
    [9] 郑颖人, 孔 亮. 岩土塑性力学[M]. 北京: 中国建筑工业出版社, 2010. (ZHENG Ying-ren, KONG Liang. Geotechnical plasticity[M]. Beijing: China Architecture & Building Press , 2010. (in Chinese))
    [10] 张志超, 程晓辉. 饱和土非等温固结和不排水剪切的热力学本构模型[J]. 岩土工程学报, 2013, 35(7): 1297-1306. (ZHANG Zhi-chao, CHENG Xiao-hui. A thermodynamic constitutive model for non-isothermal consolidation and undrained shear behaviors of saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1297-1306. (in Chinese))
    [11] 张志超. 饱和岩土体多场耦合热力学本构理论及模型研究[D]. 北京: 清华大学, 2013. (ZHANG Zhi-chao. Research on multi-field coupling thermodynamic constitutive theory and model for saturated geomaterials[D]. Beijing: Tsinghua University, 2013. (in Chinese))
    [12] 陈志辉, 程晓辉. 饱和土体固结压缩和蠕变的热力学本构理论及模型分析[J]. 岩土工程学报, 2014, 36(3):489-498. (CHEN Zhi-hui, CHENG Xiao-hui. Thermodynamic constitutive theory and analysis of consolidation compression and creep of saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 489-498. (in Chinese))
    [13] 陈志辉, 程晓辉. 饱和黏土不排水抗剪强度各向异性的热力学本构模型研究[J]. 岩土工程学报, 2014, 36(3): 836-846. (CHEN Zhi-hui, CHENG Xiao-hui. Thermodynamic constitutive model for anisotropic undrained shear strength of saturated clays[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 836-846. (in Chinese))
    [14] JIANG Y M, LIU M. Granular solid hydrodynamics[J]. Granular Matter, 2009, 11(3): 139-156.
    [15] DESRUES J, CHAMBON R, MOKNI M, MAZEROLLE F. Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography[J]. Géotechnique 1982, 32(4): 291-303.
    [16] CHEN H F, SALEEB A F. Constitutive equations for engineering materials [M]. Amsterdam: Elsevier, 1994: 106.
    [17] SOFONEA M, MATEI A. Mathematical models in contact mechanics[M]. New York: Cambridge University Press, 2012.
    [18] MINDLIN R D, DERESIEWICZ H. Elastic spheres in contact under varying oblique forces[J]. Journal of Applied Mechanics, 1953, 20(3): 327-344.
    [19] JOHNSON K L, KENDALL K, ROBERTS A D. Surface energy and the contact of elastic solids[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1971, 324(1558): 301-313.
    [20] THORNTON C. Interparticle sliding in the presence of adhesion[J]. Journal of Physics D: Applied Physics, 1991, 24(11): 1942-1946.
    [21] 张庆武, 蒋亦民, 左 静, 等. 不同粗糙度平面上静止颗粒堆底的切应力分布[J]. 科学通报, 2010, 55: 14-19. (ZHANG Qin-wu, JIANG Yi-min, ZUO Jing, et al. Tangential stress distribution at the bottom of a static granular pile on the planes of different roughness[J]. Chinese Science Bulletin, 2010, 55: 316-321. (in Chinese))
    [22] 郑鹤鹏, 蒋亦民. Couette颗粒系统中静态应力和侧压力系数的非线性弹性理论分析[J]. 物理学报, 2008, 57(12): 511-519. (ZHENG He-peng, JIANG Yi-min. A nonlinear elastic analysis of statics tress and lateral pressure coefficient for granular Couette systems[J]. Acta Physica Sinica, 2008, 57(12): 511-519. (in Chinese))
    [23] KRIMER D O, PFITZNER M, BRÄUER K, et al. Granular elasticity: general considerations and the stress dip in sand piles[J]. Physical Review E, 2006, 74(6): 1-10.
    [24] DE GROOT S R, MAZUR P. Non-equilibrium thermodynamics[M]. New York: Dover Publications, 1984.
    [25] ONSAGER L. Reciprocal relations in irreversible processes[J]. Physical Review, 1931, 37(2): 405-426.
计量
  • 文章访问数:  342
  • HTML全文浏览量:  1
  • PDF下载量:  258
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-21
  • 发布日期:  2015-09-17

目录

    /

    返回文章
    返回