• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑时间效应的K0各向异性UH模型

孔令明, 姚仰平

孔令明, 姚仰平. 考虑时间效应的K0各向异性UH模型[J]. 岩土工程学报, 2015, 37(5): 812-820. DOI: 10.11779/CJGE201505006
引用本文: 孔令明, 姚仰平. 考虑时间效应的K0各向异性UH模型[J]. 岩土工程学报, 2015, 37(5): 812-820. DOI: 10.11779/CJGE201505006
KONG Ling-ming, YAO Yang-ping. K0-anisotropic UH model considering time effects[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 812-820. DOI: 10.11779/CJGE201505006
Citation: KONG Ling-ming, YAO Yang-ping. K0-anisotropic UH model considering time effects[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 812-820. DOI: 10.11779/CJGE201505006

考虑时间效应的K0各向异性UH模型  English Version

基金项目: 国家重点基础研究发展计划(973计划)项目(2014CB047001); 国家自然科学基金项目(11272031,51179003); 北京市自然科学基金项目(8132042); 北京航空航天大学博士创新基金项目
详细信息
    作者简介:

    孔令明(1988- ),男,博士研究生,从事土的弹黏塑性本构建模方面的研究。E-mail: lm.kong@foxmail.com。

    通讯作者:

    姚仰平

K0-anisotropic UH model considering time effects

  • 摘要: 将所建立的考虑时间效应的超固结土统一硬化模型(时间UH模型)推广为能够考虑K0各向异性的弹黏塑性模型。基于广义非线性强度准则的变换应力三维化方法,将新模型扩展到三维应力状态。使用新模型预测K0固结土的一维和三轴等应变率加载试验,预测结果表明新模型能够合理反映应变率对K0固结土前期固结压力和应力应变曲线的影响。根据模型的基本方程,推导三轴压缩条件下不排水抗剪强度的理论公式,并将该公式的计算结果与试验结果进行对比,发现该公式能够反映不排水抗剪强度随超固结度和应变率的增大而提高的性质。
    Abstract: The time-dependent unified hardening constitutive model for overconsolidated clays (time-dependent UH model) proposed by the authors is extended to a constitutive model considering K0-anisotropy. Based on the generalized non-linear strength criterion and the corresponding transformed stress tensor, the new model is generalized to the three-dimensional stress state. The new model is then used to predict one-dimensional and triaxial CRS (constant rate of strain) tests on K0-consolidated clays. The predicted results indicate that the new model can reflect reasonably the influence of strain rate on preconsolidation pressure and stress-strain relationship of K0-consolidated clays. Moreover, a theoretical function of triaxial undrained shear strength is deduced from basic equations of the new model. The calculated results of the theoretical function are compared with the experimental ones, and it is shown that the theoretical function can describe the experimental phenomenon that triaxial undrained strength increases with the increasing overconsolidation degree or the strain rate.
  • [1] SECHIGUCHI H, OHTA H. Induced anisotropy and time dependency in clays[C]//Proceeding of the 9th International Conference on Soil Mechanics and Foundation Engineering. Tokyo, 1977.
    [2] WHEELER S J, NAATANEN A, KARSTUNEN M, et al. An anisotropic elastoplastic model for soft clays[J]. Canadian Geotechnical Journal, 2003, 40: 403-418.
    [3] ADACHI T, OKA F. Constitutive equations for normally consolidated clay based on elasto-viscoplasticity[J]. Soils and Foundations, 1982, 22(4): 57-70.
    [4] KUTTER B L, SATHIALINGAM N. Elastic viscoplastic modeling of the rate-dependent behavior of clays[J]. Géotechnique, 1992, 42(3): 427-441.
    [5] YIN J H, ZHU J G, GRAHAM J. A new elastic viscoplastic model for time-dependent behaviour of normally consolidated and overconsolidated clays[J]. Canadian Geotechnical Journal, 2002, 39(1): 157-173.
    [6] ZHOU C, YIN J H, ZHU J G, et al. Elastic anisotropic viscoplastic modeling of the strain-rate-dependent stress-strain behavior of K0 -consolidated natural marine clays in triaxial shear tests[J]. International Journal of Geomechanics, 2005, 5(3): 218-232.
    [7] 王立忠, 但汉波. K0 软黏土的弹黏塑性本构模型[J]. 岩土工程学报, 2007, 29(9): 1344-1354. (WANG Li-zhong, DAN Han-bo. Elastic viscoplastic constitutive model for K0 -consolidated soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1344-1354. (in Chinese))
    [8] 姚仰平, 侯伟. K0 超固结土的统一硬化模型[J]. 岩土工程学报, 2008, 30(3): 316-322. (YAO Yang-ping, HOU Wei. A unified hardening model for K0 overconsolidated clays [J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 316-322. (in Chinese))
    [9] YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469.
    [10] LUO T, YAO Y P, CHU J. Asymptotic state behaviour and its modeling for saturated sand[J]. Science China-Technological Sciences, 2009, 52(8): 2350-2358.
    [11] 姚仰平, 余亚妮. 基于统一硬化参数的砂土临界状态本构模型[J]. 岩土工程学报, 2011, 33(12): 1827-1832. (YAO Yang-ping, YU Ya-ni. Extended critical state constitutive model for sand based on unified hardening parameter[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1827-1832. (in Chinese))
    [12] YAO Y P, GAO Z W, ZHAO J D, et al. Modified UH model: constitutive modeling of overconsolidated clays based on a parabolic Hvorslev envelope[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(7): 860-868.
    [13] YAO Y P, KONG Y X. Extended UH Model: three-dimensional unified hardening model for anisotropic clays[J]. Journal of Engineering Mechanics, 2012, 138(7): 853-866.
    [14] YAO Y P, KONG L M, HU J. An elastic-viscous-plastic model for overconsolidated clays[J]. Science China- Technological Sciences, 2013, 56(2): 441-457.
    [15] BORJA R I, KAVAZANJIAN E. A constitutive model for the stress-strain-time behavior of ‘wet clays’[J]. Géotechnique, 1985, 35(3): 283-298.
    [16] KALIAKIN V N, DAFALIAS Y F. Theoretical aspects of elastoplastic-viscoplastic bounding surface model for cohesive soils[J]. Soils and Foundations, 1990, 30(3): 11-24.
    [17] YAO Y P, ZHOU A N. Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays[J]. Géotechnique, 2013, 63(15): 1328-1345.
    [18] YAO Y P, LU D C, ZHOU A N, et al. Generalized non-linear strength theory and transformed stress space[J]. Science China-Technological Sciences, 2004, 47(6): 691-709.
    [19] 姚仰平, 路德春, 周安楠. 岩土类材料的变换应力空间及其应用[J]. 岩土工程学报, 2005, 27(1): 24-29. (YAO Yang-ping, LU De-chun, ZHOU An-nan. Transformed stress space for geomaterials and its application[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 24-29. (in Chinese))
    [20] 王乃东, 姚仰平. 基于变换应力方法的各向异性模型三维化[J]. 岩土工程学报, 2011, 33(1): 50-56. (WANG Nai-dong, YAO Yang-ping. Generalization of anisotropic constitutive models using transformed stress method [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 50-56. (in Chinese))
    [21] YAO Y P, WANG N D. Transformed stress method for generalizing soil constitutive models[J]. Journal of Engineering Mechanics, 2014, 140(3): 614-629.
    [22] 李作勤. 影响黏土静止土压力的一些问题[J]. 岩土力学, 1995, 16(1): 9-16. (LI Zuo-qin. Some problems affecting lateral earth pressure at rest in clays[J]. Rock and Soil Mechanics, 1995, 16(1): 9-16. (in Chinese))
    [23] 侯伟, 姚仰平, 崔文杰. K0 超固结土的不排水抗剪强度[J]. 力学学报, 2008, 40(6): 795-803. (HOU Wei, YAO Yang-ping, CUI Wen-jie. Undrained shear strength for K0 overconsolidated clays[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6): 795-803. (in Chinese))
    [24] MESRI G, CHOI Y K. Settlement analysis of embankments on soft clays[J]. Journal of Geotechnical Engineering, 1985, 111(4): 441-464.
    [25] 但汉波. 天然软黏土的流变特性[D]. 杭州: 浙江大学, 2009. (DAN Han-bo. Time-dependent behavior of natural soft clays[D]. Hangzhou: Zhejiang University, 2009. (in Chinese))
    [26] HINCHBERGER S D, ROWE R K. Evaluation of the predictive ability of two elastic-viscoplastic constitutive models[J]. Canadian Geotechnical Journal, 2005, 42: 1675-1694.
    [27] ZHU J G. Experimental study and elastic visco-plastic modeling of the time-dependent stress-strain behaviour of Hong Kong marine deposits[D]. Hong Kong: The Hong Kong Polytechnic University, 2000.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-23
  • 发布日期:  2015-05-19

目录

    /

    返回文章
    返回