• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Chen, CAI Zheng-yin, HUANG Ying-hao, XU Guang-ming, REN Guo-feng. Centrifuge modelling of frost-heave of canals[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 109-117. DOI: 10.11779/CJGE201601011
Citation: ZHANG Chen, CAI Zheng-yin, HUANG Ying-hao, XU Guang-ming, REN Guo-feng. Centrifuge modelling of frost-heave of canals[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 109-117. DOI: 10.11779/CJGE201601011

Centrifuge modelling of frost-heave of canals

More Information
  • Received Date: December 29, 2014
  • Published Date: January 19, 2016
  • The frost heave problem is the primary reason for low-utilization rate of canals in cold areas. Relying on the large-scale geotechnical centrifuge in Nanjing Hydraulic Reserch Institute, a heat exchange test device is designed. It can realize the coupling interaction between the centrifugal and temperature fields. Subsequently, the modelling tests on the frost-heave of canals in soils with different moisture contents under 20g and 30g respectively are perfromed. The results indicate that the distance between model and heat exchanging plate has great influence on heat exchange process. The moisture content has a significant effect on the frost-heave displacement. In addition, the law of heat migration rate in the soil, which is N2 times that of the prototype, is confirmed by the test results. The designed test device and the corresponding test method provide a new approach for the reserches on frost-heave damage of canals in the northern areas of Xinjiang Uygur Autonomous Region.
  • [1]
    赖远明, 张明义, 李双阳, 等. 寒区工程理论与应用[M]. 北京: 科学出版社, 2009. (LAI Yuan-ming, ZHANG Ming-yi, LI Shuang-yang, et al. Theory and application of cold regions engineering[M]. Beijing: Science Press, 2009. (in Chinese))
    [2]
    李 卓. 土工袋防渠道冻胀试验及数值模拟[D]. 南京: 河海大学, 2013. (LI Zhuo. Experimental and numerical study on channels of frost heave prevention using soilbags[D]. Nanjing: Hohai University, 2013. (in Chinese))
    [3]
    包承纲. 我国岩土离心模拟技术的应用与发展[J]. 长江科学院学报, 2003, 30(11): 55-66, 71. (BAO Cheng-gang. Application and development of centrifugal modeling technology for geotechnical engineering in China[J]. Journal of Yangtze River Scientific Research Institute, 2003, 30(11): 55-66, 71. (in Chinese))
    [4]
    陈湘生. 人工冻结黏土力学特性研究及冻土地基离心模型试验[D]. 北京: 清华大学, 1999. (CHEN Xiang-sheng. Study on mechanic properties of artificially frozen soil and centrifuge modelling of frozen soil[D]. Beijing: Tsinghua University, 1999. (in Chinese))
    [5]
    JESSBERGER H L. Openingaddress[C]// Proceedings of 5th International Symposium on Ground Freezing. Rotterdam: Balkema A A, 1989: 407-411.
    [6]
    CHEN X X, SMITH C C. Frost heave of pipelines: centrifuge and 1g model tests[R]. Cambridge: Cambridge University, 1993.
    [7]
    SMITH C C. Thaw induced settlement of pipelines in centrifuge model tests[D]. Cambridge: University of Cambridge, 1992.
    [8]
    CLARK J I, PHILLIPS R. Centrifuge modelling of frost heave of arctic gas pipelines[C]// Proceedings of the 8th International Permafrost Conference. Zurich, 2003: 21-24.
    [9]
    GOODINGS D J, STRAUB N A. Physical modeling of frost jacking[C]// Proceedings of the ASCE International Conference on Pipeline Engineering and Construction, 2003.
    [10]
    KETCHAM S A, BLACK P B, PRETTO R. Frost heave loading of constrained footing by centrifuge modeling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(9): 874-880.
    [11]
    YANG D, GOODINGS D J. Climatic soil freezing modeled in centrifuge[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(12): 1186-1194.
    [12]
    HAN S J, GOODINGS D J. Practical model of frost heave in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(1): 92-101.
    [13]
    HARRIS C, MURTON J, DAVIES M C R. Soft‐sediment deformation during thawing of ice‐rich frozen soils: results of scaled centrifuge modelling experiments[J]. Sedimentology, 2000, 47(3): 687-700.
    [14]
    DAVIES M C R, HAMZA O, HARRIS C. Physical modelling of permafrost warming in rock slopes[C]// Proceedings of the 8th International Conference on Permafrost. Zurich, 2003: 169-173.
    [15]
    HARRIS C, MURTON J B, DAVIES M C R. An analysis of mechanisms of ice-wedge casting based on geotechnical centrifuge simulations[J]. Geomorphology, 2005, 71(3): 328-343.
    [16]
    HARRIS C, SMITH J S, DAVIES M C R, et al. An investigation of periglacial slope stability in relation to soil properties based on physical modelling in the geotechnical centrifuge[J]. Geomorphology, 2008, 93(3): 437-459.
    [17]
    ZHOU J, TANG Y Q. Centrifuge experimental study of thaw settlement characteristics of mucky clay after artifical ground freezing[J]. Engineering Geology, 2015, 190: 98-108.
    [18]
    陈湘生, 濮家骝, 罗小刚, 等. 土壤冻胀离心模拟试验[J]. 煤炭学报, 1999, 24(6): 615-619. (CHEN Xiang-sheng, PU Jia-liu, LUO Xiao-gang, et al. Centrifuge modelling tests of soil freezing heave[J]. Journal of China Coal society, 1999, 24(6): 615-619. (in Chinese))
    [19]
    陈湘生, 濮家骝, 殷昆亭, 等. 地基冻-融循环离心模型试验研究[J]. 清华大学学报(自然科学版), 2002, 42(4): 531-534. (CHEN Xiang-sheng, PU Jia-liu, LUO Xiao-gang, et al. Centrifuge modelling tests of foundation undergoing two cycles of frost heave and thaw settlement[J]. Journal of Tsinghua University (Science and Technology), 2002, 42(4): 531-534. (in Chinese))
    [20]
    苏 谦, 钟 彪, 王 迅, 等. 青藏铁路多年冻土斜坡路基失稳变形特性[J]. 中南大学学报(自然科学版), 2010, 41(5): 1939-1943. (SU Qian, ZHONG Biao, WANG Xun, et al. Instable deformation characteristics of sloping subgrade in permafrost region for Qinghai-Tibet railway[J]. Journal of Central South University (Science and Technology), 2010, 41(5): 1939-1943. (in Chinese))
    [21]
    黄俊杰, 苏 谦, 钟 彪, 等. 多年冻土斜坡路基失稳变形影响因素及特征研究[J]. 岩土力学, 2013, 34(3): 703-710. (HUANG Jun-jie, SU qian, ZHONG Biao, et al. Deformation failure characteristics and influential factors of subgrade upon slope in permafrost area[J]. Rock and Soil Mechanics, 2013, 34(3): 703-710. (in Chinese))
    [22]
    MILLER R D. Frost heaving in non-colloidal soils[C]// Proc 3rd Int Conf On Permafrost, National Research Council of Canada. Ottawa, 1978: 707-713.
    [23]
    SAVVIDOU. Centrifuge modelling of heat transfer in soil[C]// Centrifuge 88. Balkema, 1988: 583-591.
    [24]
    KRISHNAIAH S, SINGH D N. Centrifuge modelling of heat migration in soils[J]. International Journal of Physical Modelling in Geotechnics, 2004: 39-47.
    [25]
    KRISHNAIAH S, SINGH D N. Determination of thermal properties of soils in a geotechnical centrifuge[J]. Journal of Testing and Evaluation, 2006, 34(4): 319.
    [26]
    徐德胜. 半导体制冷与应用技术[M]. 2版. 上海: 上海交通大学出版社, 1999. (XU De-sheng. Semiconductor refrigeration and application technology[M]. 2nd ed. Shanghai: Shanghai Jiao Tong University Press, 1999. (in Chinese))
    [27]
    蔡正银, 吴志强, 黄英豪, 等. 含水率和含盐量对冻土无侧限抗压强度影响的试验研究[J]. 岩土工程学报, 2014, 36(9): 1580-1586. (CAI Zheng-yin, WU Zhi-qiang, HUANG Ying-hao, et al. Influence of water and salt contentson strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1580-1586. (in Chinese))
    [28]
    吴志强. 北疆渠基土冻胀特性的实验研究[D]. 南京: 南京水利科学研究院, 2014. (WU Zhi-qiang. Experimental study on frost heaving properties of north Xinjiang channel soil[D]. Nanjing: Nanjing Hydraulic Research Institute, 2014. (in Chinese))
    [29]
    KARLEKAR B V, DESMOND R M. Engineering heat transfer[M]. New York: West Publ, 1977.
    [30]
    HOLMAN J P. Heat transfer[M]. Singapore: McGraw-Hill Book Co, 1986.
    [31]
    TAYLOR R N. Geotechnical centrifuge techology[M]. London: Blackie Academic and Professional, 1995.
    [32]
    许国良, 王晓墨, 邬田华, 等. 工程传热学[M]. 北京: 中国电力出版社, 2010. (XU Guo-liang, WANG Xiao-mo, WU Tian-hua, et al. Engineering heat-transfer theory[M]. Beijing: China Electric Power Pres, 2010. (in Chinese))
  • Related Articles

    [1]LI Wentao, SUN Zhanghao, ZHUANG Yan, XIAO Henglin, FU Zhiwei, ZHOU Xinlong. Mechanical and swelling properties, as well as micro-mechanism of sulfate-bearing soil stabilized by magnesium oxide and cement[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1840-1848. DOI: 10.11779/CJGE20230409
    [2]WANG Zi-shuai, WANG Dong-xing. Performances of industrial residue-cement solidified soils in resisting sulfate erosion[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2035-2042. DOI: 10.11779/CJGE202211009
    [3]XIAO Ze-an, ZHU Lin-ze, HOU Zhen-rong, DONG Xiao-qiang. Effects of water/salt phase transition on matric suction of sulfate saline soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1935-1941. DOI: 10.11779/CJGE202210020
    [4]HE Wen-zheng, XU Lin-sheng. Time-dependent mechanical behavior of tunnel linings under sulfate attack[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1010-1018. DOI: 10.11779/CJGE202106004
    [5]XUE Xia, LI Wang-lin, LI Chen, WEI Ru-chun, YU Hai-rui. Experimental study on expansion deformation of non-thermal-bonding composite geomembrane under ring restraint[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1145-1150. DOI: 10.11779/CJGE202006020
    [6]GUO You-lin, ZHAO Ming-hua, PENG Wen-zhe. Lateral bulgings and settlements of solid-bulk tandem compound piles based on modified strain wedge model[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2149-2155. DOI: 10.11779/CJGE201911022
    [7]YAO Jun-kai, YE Yang-sheng, WANG Peng-cheng, CHEN Feng, CAI De-gou. Subgrade heave of sulfate attacking on cement-stabilized filler[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 782-788. DOI: 10.11779/CJGE201904024
    [8]ZHANG Sha-sha, XIE Shan-jie, YANG Xiao-hua, CHEN Wei-zhi. Action mechanism of coarse particle sulfate soil subgrade modified by volcanic ash[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 588-594. DOI: 10.11779/CJGE201903023
    [9]ZHANG Sha-sha, WANG Yong-wei, BAO Wei-xing, YANG Xiao-hua, WANG Long. Sensitive parameters of embankment deformation behavior for coarse-grained sulfate saline soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 946-952. DOI: 10.11779/CJGE201705020
    [10]ZHAO Ming-hua, GU Mei-xiang, ZHANG Ling, LIU Meng. Model tests on influence of vertical geosynthetic-encasement on performance of stone columns[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1587-1593. DOI: 10.11779/CJGE201409003
  • Cited by

    Periodical cited type(9)

    1. 陆晶晶,李康. 柔性沥青路面病害成因分析及修复措施研究. 建筑机械. 2025(01): 16-21 .
    2. 林宇坤,宋玲,刘杰,闫晓亮,朱世煜. 荒漠区沥青路面拱胀病害机理及影响因素分析. 公路交通科技. 2024(04): 31-41 .
    3. 张辉,王志杰. 硫酸盐侵蚀作用对ATB力学性能的影响. 安徽建筑. 2024(07): 84-87 .
    4. 陆晶晶,刘德功. 尼日利亚某A级公路柔性沥青路面病害分析与路面结构设计. 建筑机械. 2024(11): 10-15 .
    5. 张梦媛,丁龙亭,王选仓,谢金生,王孜健. 基于Comsol Multiphysics的半浸泡非饱和水泥基材料水分输运数值模型研究. 重庆大学学报. 2024(12): 45-56 .
    6. 张留俊,裘友强,张发如,李雄飞,刘军勇. 降水入渗条件下氯盐渍土水盐迁移规律. 交通运输工程学报. 2023(04): 116-127 .
    7. 李品良,许强,刘佳良,何攀,纪续,陈婉琳,彭大雷. 盐分影响重塑黄土渗透性的微观机制试验研究. 岩土力学. 2023(S1): 504-512 .
    8. 吴军. 掺入玄武岩纤维的道桥沥青路面复合材料试验分析. 建筑科技. 2023(06): 108-110 .
    9. 屈磊,许健,陈忠燕,刘永昊. 新疆盐渍土地区公路纵向开裂机制探讨. 市政技术. 2022(10): 40-44 .

    Other cited types(6)

Catalog

    Article views (363) PDF downloads (390) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return