• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Zi-shuai, WANG Dong-xing. Performances of industrial residue-cement solidified soils in resisting sulfate erosion[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2035-2042. DOI: 10.11779/CJGE202211009
Citation: WANG Zi-shuai, WANG Dong-xing. Performances of industrial residue-cement solidified soils in resisting sulfate erosion[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2035-2042. DOI: 10.11779/CJGE202211009

Performances of industrial residue-cement solidified soils in resisting sulfate erosion

More Information
  • Received Date: October 11, 2021
  • Available Online: December 08, 2022
  • To promote application of the industrial residue in coastal soil solidification, the performances of the industrial residue-cement solidified soils (IRCS) in resisting sulfate erosion are investigated. Based on the combination of the cement and the industrial residues (ground granulated blast-furnace slag, fly ash, silica fume and calcium carbide slag), the mechanical behavior, microstructure and intrinsic chemical reaction of the IRCS after standard curing, water soaking and sulfate solution soaking are identified by the appearance observation, unconfined compressive strength, X-ray diffraction and scanning electron microscope tests. The obtained results show that: (1) The erosion of magnesium sulfate to the IRCS is higher than that of sodium sulfate. (2) Compared with the cement-solidified soils, the addition of the industrial residue can significantly alleviate the sulfate erosion. (3) After magnesium sulfate solution soaking, the strength of the IRCS is improved within 7 days and then descends continuously with increasing curing age. (4) The strength retention coefficient of IRCS follows the sequential order as ground granulated blast-furnace slag > silica fume > fly ash > calcium carbide slag. The IRCS in sodium sulfate environment is mainly affected by erosion of SO42, while the combined effect of sulfate erosion and weakening cementation occurs in magnesium sulfate environment. It will result in the enlarged intergranular pores, and the reaction products are correlated with the CaO content contained in the industrial residues. Finally, the conceptual model for the microreaction mechanism of solidified soils in sulfate environment is established, which provides a theoretical basis for the researches on sulfate resistance of solidified soil.
  • [1]
    中国发改环资〔2021〕381号. 关于"十四五"大宗固体废弃物综合利用的指导意见[EB/OL]. [2021-03-18]https://www.ndrc.gov.cn/xxgk/zcfb/tz/202103/t20210324_1270286.html.

    China Development and Reform Commission [2021] No. 381. Guidance on the comprehensive utilization of bulk solid waste during the 14th Five-Year Plan[EB/OL]. [2021-03-18]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202103/t20210324_1270286.html (in Chinese)
    [2]
    WANG D X, BENZERZOUR M, HU X, et al. Strength, permeability, and micromechanisms of industrial residue magnesium oxychloride cement solidified slurry[J]. International Journal of Geomechanics, 2020, 20(7): 04020088. doi: 10.1061/(ASCE)GM.1943-5622.0001690
    [3]
    CHU T, ZHENG J H, CHEN D, et al. Utilization of industrial waste in cement in a marine environment with a tropical climate[J]. Journal of Marine Science and Engineering, 2019, 7(8): 245. doi: 10.3390/jmse7080245
    [4]
    赵德强, 张昺榴, 沈卫国, 等. 磷石膏对微膨胀水泥孔隙液及水化产物的影响[J]. 建筑材料学报, 2020, 23(6): 1273–1281. doi: 10.3969/j.issn.1007-9629.2020.06.003

    ZHAO De-qiang, ZHANG Bing-liu, SHEN Wei-guo, et al. Effect of phosphogypsum on pore solution and hydration products of slight-expansive cement[J]. Journal of Building Materials, 2020, 23(6): 1273–1281. (in Chinese) doi: 10.3969/j.issn.1007-9629.2020.06.003
    [5]
    WANG D X, ZHU J Y, WANG R H. Assessment of magnesium potassium phosphate cement for waste sludge solidification: Macro- and micro-analysis[J]. Journal of Cleaner Production, 2021, 294: 126365. doi: 10.1016/j.jclepro.2021.126365
    [6]
    HORPIBULSUK S, RACHAN R, RAKSACHON R, et al. Role of fly ash on strength and microstructure development in blended cement stabilized silty clay[J]. Soils and Foundations, 2009, 49(1): 85–98 doi: 10.3208/sandf.49.85
    [7]
    FURLAN A P, RAZAKAMANANTSOA A, RANAIVOMANANA H, et al. Effect of fly ash on microstructural and resistance characteristics of dredged sediment stabilized with lime and cement[J]. Construction and Building Materials, 2021, 272: 121637. doi: 10.1016/j.conbuildmat.2020.121637
    [8]
    程强强. 粉煤灰水泥加固海相黏土的力学特性研究[D]. 徐州: 中国矿业大学, 2018.

    CHENG Qiang-qiang. Study on Mechanical Properties of Fly Ash Cement Treated Marine Clay[D]. Xuzhou: China University of Mining and Technology, 2018. (in Chinese)
    [9]
    ZHANG W L, ZHAO L Y, MCCABE B A, et al. Dredged marine sediments stabilized/solidified with cement and GGBS: factors affecting mechanical behaviour and leachability[J]. Science of the Total Environment, 2020, 733: 138551. doi: 10.1016/j.scitotenv.2020.138551
    [10]
    LANG L, SONG C Y, XUE L, et al. Effectiveness of waste steel slag powder on the strength development and associated micro-mechanisms of cement-stabilized dredged sludge[J]. Construction and Building Materials, 2020, 240: 117975. doi: 10.1016/j.conbuildmat.2019.117975
    [11]
    YANG Q, DU C X, ZHANG J L, et al. Influence of silica fume and additives on unconfined compressive strength of cement-stabilized marine soft clay[J]. Journal of Materials in Civil Engineering, 2020, 32(2): 04019346. doi: 10.1061/(ASCE)MT.1943-5533.0003010
    [12]
    杨俊杰, 孙涛, 张玥宸, 等. 腐蚀性场地形成的水泥土的劣化研究[J]. 岩土工程学报, 2012, 34(1): 130–138. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14499.shtml

    YANG Jun-jie, SUN Tao, ZHANG Yue-chen, et al. Deterioration of soil cement stabilized in corrosive site[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 130–138. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14499.shtml
    [13]
    万志辉, 戴国亮, 龚维明, 等. 海水侵蚀环境对钙质砂水泥土强度影响及微观结构研究[J]. 岩土工程学报, 2020, 42(增刊1): 65–69. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18450.shtml

    WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming, et al. Strength and microstructure of calcareous sand-cemented soil under seawater erosion environment[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 65–69. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18450.shtml
    [14]
    KAMPALA A, JITSANGIAM P, PIMRAKSA K, et al. An investigation of sulfate effects on compaction characteristics and strength development of cement-treated sulfate bearing clay subgrade[J]. Road Materials and Pavement Design, 2021, 22(10): 2396–2409. doi: 10.1080/14680629.2020.1753564
    [15]
    刘泉声, 柳志平, 程勇, 等. 水泥土在侵蚀环境中的试验研究和等效分析[J]. 岩土力学, 2013, 34(7): 1854–1860. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201307006.htm

    LIU Quan-sheng, LIU Zhi-ping, CHENG Yong, et al. Experimental study and equivalent analysis of cemented soil under corrosion environment[J]. Rock and Soil Mechanics, 2013, 34(7): 1854–1860. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201307006.htm
    [16]
    闫楠, 杨俊杰, 刘强, 等. 海水环境下水泥土强度衰减过程室内试验研究[J]. 土木工程学报, 2017, 50(11): 115–124. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201711012.htm

    YAN Nan, YANG Jun-jie, LIU Qiang, et al. Laboratory test on strength deterioration process of soil cement in seawater environment[J]. China Civil Engineering Journal, 2017, 50(11): 115–124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201711012.htm
    [17]
    傅小茜, 冯俊德, 谢友均. 硫酸盐侵蚀环境下水泥土的力学行为研究[J]. 岩土力学, 2008, 29(增刊1): 659–662. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1134.htm

    FU Xiao-qian, FENG Jun-de, XIE You-jun. Mechanical behavior of soil cement under ambient with sulfate conditions[J]. Rock and Soil Mechanics, 2008, 29(S1): 659–662. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1134.htm
    [18]
    吴燕开, 史可健, 胡晓士, 等. 海水侵蚀下钢渣粉+水泥固化土强度劣化试验研究[J]. 岩土工程学报, 2019, 41(6): 1014–1022. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17785.shtml

    WU Yan-kai, SHI Ke-jian, HU Xiao-shi, et al. Experimental study on strength degradation of steel slag + cement-solidified soil under seawater erosion[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1014–1022. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17785.shtml
    [19]
    LI Q, CHEN J, SHI Q, et al. Macroscopic and microscopic mechanisms of cement-stabilized soft clay mixed with seawater by adding ultrafine silica fume[J]. Advances in Materials Science and Engineering, 2014, 2014: 810652.
    [20]
    王东星, 王宏伟, 邹维列, 等. 活性MgO-粉煤灰固化淤泥耐久性研究[J]. 岩土力学, 2019, 40(12): 4675–4684. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912015.htm

    WANG Dong-xing, WANG Hong-wei, ZOU Wei-lie, et al. Study of durability of dredged sludge solidified with reactive MgO-fly ash[J]. Rock and Soil Mechanics, 2019, 40(12): 4675–4684. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912015.htm
    [21]
    HEIKAL M, ZAKI M E A, ALSHAMMARI A. Preparation and characterization of an eco-friendly binder from alkali-activated aluminosilicate solid industrial wastes containing CKD and GGBS[J]. Journal of Materials in Civil Engineering, 2018, 30(6): 04018093.
    [22]
    IRASSAR E F. Sulfate attack on cementitious materials containing limestone filler—A review[J]. Cement and Concrete Research, 2009, 39(3): 241–254.
    [23]
    OGAWA S, NOZAKI T, YAMADA K, et al. Improvement on sulfate resistance of blended cement with high alumina slag[J]. Cement and Concrete Research, 2012, 42(2): 244–251.
    [24]
    吴凯, 施惠生, 徐玲琳, 等. 集料对含矿粉混凝土抗硫酸镁侵蚀性能的影响[J]. 建筑材料学报, 2016, 19(3): 442–448. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201603005.htm

    WU Kai, SHI Hui-sheng, XU Ling-lin, et al. Effect of aggregate on degradation of slag blended concrete under magnesium sulfate attack[J]. Journal of Building Materials, 2016, 19(3): 442–448. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201603005.htm
    [25]
    WU J, WEI J X, HUANG H L, et al. Effect of multiple ions on the degradation in concrete subjected to sulfate attack[J]. Construction and Building Materials, 2020, 259: 119846.
    [26]
    HELSON O, ESLAMI J, BEAUCOUR A L, et al. Durability of soil mix material subjected to wetting/drying cycles and external sulfate attacks[J]. Construction and Building Materials, 2018, 192(20): 416–428.
  • Related Articles

    [1]Study on strength formation mechanism of Mycelium Bio-composites Lightweight Soil[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240753
    [2]WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming, ZHU Ming-xing, GAO Lu-chao. Strength and microstructure of calcareous sand-cemented soil under seawater erosion environment[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 65-69. DOI: 10.11779/CJGE2020S1013
    [3]HUANG Chun-xia, HUANG Min, CAI Wei, CHEN Guo-xing, LIU Chang, ZHANG Yan-mei. Microstructure of silt with different clay contents[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 758-764. DOI: 10.11779/CJGE202004020
    [4]ZHANG Xian-wei, KONG Ling-wei, LI Jun, YANG Ai-wu. Microscopic mechanism of strength increase of clay during thixotropic process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1407-1413. DOI: 10.11779/CJGE201408005
    [5]ZHOU Qiao-yong, XIONG Bao-lin, YANG Guang-qing, LIU Wei-chao. Microstructure of low liquid limit silt[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 439-444.
    [6]CHEN Yu-long. Microstructure of expansive soil from Yunnan Province[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 334-339.
    [7]Microstructural change of soft clay before and after one-dimensional compression creep[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1688-1694.
    [8]ZHOU Cuiying, MU Chunmei. Relationship between micro-structural characters of fracture surface and strength of soft clay[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1136-1141.
    [9]WANG Baojun, SHI Bin, LIU Zhibin, CAI Yi. Fractal study on microstructure of clayey soil by GIS[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 244-247.
    [10]Shi Bin. Quantitative  Assessment  of  Changes  of  Microstructure  for  Clayey  Soil  in  the  Process  of  Compaction[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(4): 60-65.

Catalog

    Article views (275) PDF downloads (38) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return