Citation: | WANG Zi-shuai, WANG Dong-xing. Performances of industrial residue-cement solidified soils in resisting sulfate erosion[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2035-2042. DOI: 10.11779/CJGE202211009 |
[1] |
中国发改环资〔2021〕381号. 关于"十四五"大宗固体废弃物综合利用的指导意见[EB/OL]. [2021-03-18]https://www.ndrc.gov.cn/xxgk/zcfb/tz/202103/t20210324_1270286.html.
China Development and Reform Commission [2021] No. 381. Guidance on the comprehensive utilization of bulk solid waste during the 14th Five-Year Plan[EB/OL]. [2021-03-18]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202103/t20210324_1270286.html (in Chinese)
|
[2] |
WANG D X, BENZERZOUR M, HU X, et al. Strength, permeability, and micromechanisms of industrial residue magnesium oxychloride cement solidified slurry[J]. International Journal of Geomechanics, 2020, 20(7): 04020088. doi: 10.1061/(ASCE)GM.1943-5622.0001690
|
[3] |
CHU T, ZHENG J H, CHEN D, et al. Utilization of industrial waste in cement in a marine environment with a tropical climate[J]. Journal of Marine Science and Engineering, 2019, 7(8): 245. doi: 10.3390/jmse7080245
|
[4] |
赵德强, 张昺榴, 沈卫国, 等. 磷石膏对微膨胀水泥孔隙液及水化产物的影响[J]. 建筑材料学报, 2020, 23(6): 1273–1281. doi: 10.3969/j.issn.1007-9629.2020.06.003
ZHAO De-qiang, ZHANG Bing-liu, SHEN Wei-guo, et al. Effect of phosphogypsum on pore solution and hydration products of slight-expansive cement[J]. Journal of Building Materials, 2020, 23(6): 1273–1281. (in Chinese) doi: 10.3969/j.issn.1007-9629.2020.06.003
|
[5] |
WANG D X, ZHU J Y, WANG R H. Assessment of magnesium potassium phosphate cement for waste sludge solidification: Macro- and micro-analysis[J]. Journal of Cleaner Production, 2021, 294: 126365. doi: 10.1016/j.jclepro.2021.126365
|
[6] |
HORPIBULSUK S, RACHAN R, RAKSACHON R, et al. Role of fly ash on strength and microstructure development in blended cement stabilized silty clay[J]. Soils and Foundations, 2009, 49(1): 85–98 doi: 10.3208/sandf.49.85
|
[7] |
FURLAN A P, RAZAKAMANANTSOA A, RANAIVOMANANA H, et al. Effect of fly ash on microstructural and resistance characteristics of dredged sediment stabilized with lime and cement[J]. Construction and Building Materials, 2021, 272: 121637. doi: 10.1016/j.conbuildmat.2020.121637
|
[8] |
程强强. 粉煤灰水泥加固海相黏土的力学特性研究[D]. 徐州: 中国矿业大学, 2018.
CHENG Qiang-qiang. Study on Mechanical Properties of Fly Ash Cement Treated Marine Clay[D]. Xuzhou: China University of Mining and Technology, 2018. (in Chinese)
|
[9] |
ZHANG W L, ZHAO L Y, MCCABE B A, et al. Dredged marine sediments stabilized/solidified with cement and GGBS: factors affecting mechanical behaviour and leachability[J]. Science of the Total Environment, 2020, 733: 138551. doi: 10.1016/j.scitotenv.2020.138551
|
[10] |
LANG L, SONG C Y, XUE L, et al. Effectiveness of waste steel slag powder on the strength development and associated micro-mechanisms of cement-stabilized dredged sludge[J]. Construction and Building Materials, 2020, 240: 117975. doi: 10.1016/j.conbuildmat.2019.117975
|
[11] |
YANG Q, DU C X, ZHANG J L, et al. Influence of silica fume and additives on unconfined compressive strength of cement-stabilized marine soft clay[J]. Journal of Materials in Civil Engineering, 2020, 32(2): 04019346. doi: 10.1061/(ASCE)MT.1943-5533.0003010
|
[12] |
杨俊杰, 孙涛, 张玥宸, 等. 腐蚀性场地形成的水泥土的劣化研究[J]. 岩土工程学报, 2012, 34(1): 130–138. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14499.shtml
YANG Jun-jie, SUN Tao, ZHANG Yue-chen, et al. Deterioration of soil cement stabilized in corrosive site[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 130–138. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14499.shtml
|
[13] |
万志辉, 戴国亮, 龚维明, 等. 海水侵蚀环境对钙质砂水泥土强度影响及微观结构研究[J]. 岩土工程学报, 2020, 42(增刊1): 65–69. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18450.shtml
WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming, et al. Strength and microstructure of calcareous sand-cemented soil under seawater erosion environment[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 65–69. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18450.shtml
|
[14] |
KAMPALA A, JITSANGIAM P, PIMRAKSA K, et al. An investigation of sulfate effects on compaction characteristics and strength development of cement-treated sulfate bearing clay subgrade[J]. Road Materials and Pavement Design, 2021, 22(10): 2396–2409. doi: 10.1080/14680629.2020.1753564
|
[15] |
刘泉声, 柳志平, 程勇, 等. 水泥土在侵蚀环境中的试验研究和等效分析[J]. 岩土力学, 2013, 34(7): 1854–1860. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201307006.htm
LIU Quan-sheng, LIU Zhi-ping, CHENG Yong, et al. Experimental study and equivalent analysis of cemented soil under corrosion environment[J]. Rock and Soil Mechanics, 2013, 34(7): 1854–1860. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201307006.htm
|
[16] |
闫楠, 杨俊杰, 刘强, 等. 海水环境下水泥土强度衰减过程室内试验研究[J]. 土木工程学报, 2017, 50(11): 115–124. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201711012.htm
YAN Nan, YANG Jun-jie, LIU Qiang, et al. Laboratory test on strength deterioration process of soil cement in seawater environment[J]. China Civil Engineering Journal, 2017, 50(11): 115–124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201711012.htm
|
[17] |
傅小茜, 冯俊德, 谢友均. 硫酸盐侵蚀环境下水泥土的力学行为研究[J]. 岩土力学, 2008, 29(增刊1): 659–662. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1134.htm
FU Xiao-qian, FENG Jun-de, XIE You-jun. Mechanical behavior of soil cement under ambient with sulfate conditions[J]. Rock and Soil Mechanics, 2008, 29(S1): 659–662. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1134.htm
|
[18] |
吴燕开, 史可健, 胡晓士, 等. 海水侵蚀下钢渣粉+水泥固化土强度劣化试验研究[J]. 岩土工程学报, 2019, 41(6): 1014–1022. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17785.shtml
WU Yan-kai, SHI Ke-jian, HU Xiao-shi, et al. Experimental study on strength degradation of steel slag + cement-solidified soil under seawater erosion[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1014–1022. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17785.shtml
|
[19] |
LI Q, CHEN J, SHI Q, et al. Macroscopic and microscopic mechanisms of cement-stabilized soft clay mixed with seawater by adding ultrafine silica fume[J]. Advances in Materials Science and Engineering, 2014, 2014: 810652.
|
[20] |
王东星, 王宏伟, 邹维列, 等. 活性MgO-粉煤灰固化淤泥耐久性研究[J]. 岩土力学, 2019, 40(12): 4675–4684. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912015.htm
WANG Dong-xing, WANG Hong-wei, ZOU Wei-lie, et al. Study of durability of dredged sludge solidified with reactive MgO-fly ash[J]. Rock and Soil Mechanics, 2019, 40(12): 4675–4684. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912015.htm
|
[21] |
HEIKAL M, ZAKI M E A, ALSHAMMARI A. Preparation and characterization of an eco-friendly binder from alkali-activated aluminosilicate solid industrial wastes containing CKD and GGBS[J]. Journal of Materials in Civil Engineering, 2018, 30(6): 04018093.
|
[22] |
IRASSAR E F. Sulfate attack on cementitious materials containing limestone filler—A review[J]. Cement and Concrete Research, 2009, 39(3): 241–254.
|
[23] |
OGAWA S, NOZAKI T, YAMADA K, et al. Improvement on sulfate resistance of blended cement with high alumina slag[J]. Cement and Concrete Research, 2012, 42(2): 244–251.
|
[24] |
吴凯, 施惠生, 徐玲琳, 等. 集料对含矿粉混凝土抗硫酸镁侵蚀性能的影响[J]. 建筑材料学报, 2016, 19(3): 442–448. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201603005.htm
WU Kai, SHI Hui-sheng, XU Ling-lin, et al. Effect of aggregate on degradation of slag blended concrete under magnesium sulfate attack[J]. Journal of Building Materials, 2016, 19(3): 442–448. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201603005.htm
|
[25] |
WU J, WEI J X, HUANG H L, et al. Effect of multiple ions on the degradation in concrete subjected to sulfate attack[J]. Construction and Building Materials, 2020, 259: 119846.
|
[26] |
HELSON O, ESLAMI J, BEAUCOUR A L, et al. Durability of soil mix material subjected to wetting/drying cycles and external sulfate attacks[J]. Construction and Building Materials, 2018, 192(20): 416–428.
|
[1] | Study on strength formation mechanism of Mycelium Bio-composites Lightweight Soil[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240753 |
[2] | WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming, ZHU Ming-xing, GAO Lu-chao. Strength and microstructure of calcareous sand-cemented soil under seawater erosion environment[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 65-69. DOI: 10.11779/CJGE2020S1013 |
[3] | HUANG Chun-xia, HUANG Min, CAI Wei, CHEN Guo-xing, LIU Chang, ZHANG Yan-mei. Microstructure of silt with different clay contents[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 758-764. DOI: 10.11779/CJGE202004020 |
[4] | ZHANG Xian-wei, KONG Ling-wei, LI Jun, YANG Ai-wu. Microscopic mechanism of strength increase of clay during thixotropic process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1407-1413. DOI: 10.11779/CJGE201408005 |
[5] | ZHOU Qiao-yong, XIONG Bao-lin, YANG Guang-qing, LIU Wei-chao. Microstructure of low liquid limit silt[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 439-444. |
[6] | CHEN Yu-long. Microstructure of expansive soil from Yunnan Province[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 334-339. |
[7] | Microstructural change of soft clay before and after one-dimensional compression creep[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1688-1694. |
[8] | ZHOU Cuiying, MU Chunmei. Relationship between micro-structural characters of fracture surface and strength of soft clay[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1136-1141. |
[9] | WANG Baojun, SHI Bin, LIU Zhibin, CAI Yi. Fractal study on microstructure of clayey soil by GIS[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 244-247. |
[10] | Shi Bin. Quantitative Assessment of Changes of Microstructure for Clayey Soil in the Process of Compaction[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(4): 60-65. |