• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

多洞并行隧道围岩稳定性与破坏模式极限分析

杨峰, 高廉镇, 高益康, 阳军生

杨峰, 高廉镇, 高益康, 阳军生. 多洞并行隧道围岩稳定性与破坏模式极限分析[J]. 岩土工程学报, 2023, 45(5): 976-985. DOI: 10.11779/CJGE20220202
引用本文: 杨峰, 高廉镇, 高益康, 阳军生. 多洞并行隧道围岩稳定性与破坏模式极限分析[J]. 岩土工程学报, 2023, 45(5): 976-985. DOI: 10.11779/CJGE20220202
YANG Feng, GAO Lianzhen, GAO Yikang, YANG Junsheng. Stability of surrounding rock and failure mode of parallel multi-line tunnels[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 976-985. DOI: 10.11779/CJGE20220202
Citation: YANG Feng, GAO Lianzhen, GAO Yikang, YANG Junsheng. Stability of surrounding rock and failure mode of parallel multi-line tunnels[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 976-985. DOI: 10.11779/CJGE20220202

多洞并行隧道围岩稳定性与破坏模式极限分析  English Version

基金项目: 

国家自然科学基金项目 51878669

详细信息
    作者简介:

    杨峰(1981—),男,博士,副教授,主要从事隧道与地下工程相关的研究工作。E-mail: yf5754@126.com

    通讯作者:

    阳军生, E-mail: jsyang@csu.edu.cn

  • 中图分类号: TU443

Stability of surrounding rock and failure mode of parallel multi-line tunnels

  • 摘要: 受交通廊道的空间限制,隧道工程逐渐出现了多洞并行的布设形式。当相邻隧道净间距较小时,建设期间可能出现相互影响,降低围岩稳定性。将该课题简化为平面应变条件下的多洞并行等间距毛洞隧道围岩稳定性问题,应用刚体平动运动单元上限法开展计算分析,获取失稳临界状态下围岩稳定系数曲线和滑移线网破坏模式的定量数据,揭示围岩稳定性与潜在破坏模式随强度参数、隧道埋深H和多洞净距S等因素间的演化规律。研究结果和已有双洞并行隧道的对比分析表明:净间距S大于转换间距Str后,二者均表现为单洞独自破坏形式,且稳定系数Ncr数值吻合较好;而净距S较小时,多洞并行隧道围岩表现为上方整体下沉条件下的中夹岩破坏,较之双洞并行情况围岩稳定性大大降低。研究结果可为多洞并行隧道围岩稳定性评价及加固方案制定等工作提供数据支撑。
    Abstract: The layout of parallel tunnels is adopted in many tunnel construction due to the limited space of traffic corridor. The adjacent tunnels with a small clear spacing distance may cause significant interaction to reduce the stability of the surrounding rock. The problem is simplified as the stability model for the parallel multi-line tunnels with equidistance under plane strain. The systematic analysis is carried out using the upper bound method for rigid body translational motion elements. The curves for the stability coefficient of surrounding rock of tunnels the and the failure mode of slip line network under the instable critical state are obtained. The stability of the surrounding rock and the potential failure mode varying with strength parameters, tunnel buried depth H and clear spacing distance of multi-line tunnels S are discussed. The results of the parallel multi-line tunnels are compared with those of the twin-line tunnels reported by the existing literature. It is shown that when the clear spacing distance S is greater than the conversion distance Str, the failure mode of a single tunnel is presented for the both types of tunnels, and the stability coefficient Ncr is more consistent. In contrary, when the clear spacing distance S is small, the collapse of the middle rock column caused by the settlement in the whole upper part of tunnels is presented in the surrounding rock of the parallel multi-line tunnels. The stability of the parallel multi-line tunnels greatly decreases compared with the case in the twin-line tunnels. The results may provide data support for evaluation of the stability of the surrounding rock and formulating the reinforcement scheme for the parallel multi-line tunnels.
  • 图  1   刚体平动运动单元上限法计算流程图

    Figure  1.   Flow chart of upper bound method for rigid translational motion elements

    图  2   多洞并行等间距隧道围岩稳定性分析模型

    Figure  2.   Model for stability of surrounding rock of parallel multi-line tunnels with equidistance

    图  3   不同参数条件下多洞并行等间距隧道围岩稳定系数Ncr关系曲线

    Figure  3.   Variation of stability number Ncr for different parameters in parallel multi-line tunnels with equidistance

    图  4   不同参数条件下多洞并行等间距隧道围岩稳定系数Ncr与单洞隧道Ncr(Single)比值ηcr变化曲线

    Figure  4.   Curves of ratio ηcr for stability number Ncr to single tunnel Ncr(Single) for different parameters in parallel multi-line tunnels

    图  5   多洞并行隧道转化间距比Str/D与埋深比H/D关系曲线

    Figure  5.   Curves for conversion spacing ratio Str/D and buried depth ratio H/D in parallel multi-line tunnels

    图  6   多洞并行隧道围岩破坏模式(S/D=3, H/D=3, ϕ=15°)

    Figure  6.   Failure modes of surrounding rock for parallel multi-line tunnels (S/D=3, H/D=3, ϕ=15°)

    图  7   多洞并行隧道围岩破坏模式随净间距比S/D的演化规律(H/D=3, ϕ=15°)

    Figure  7.   Variation of failure mode of surrounding rock for parallel multi-line tunnels with net spacing ratio S/D(H/D=3, ϕ=15°)

    图  8   多洞并行隧道主要破坏面演化规律

    Figure  8.   Representative failures surface in parallel multi-line tunnels

    图  9   多洞并行隧道围岩整体下沉区高度比Hc/D随净间距比S/D的演化规律

    Figure  9.   Variation of subsidence height ratio Hc/D of surrounding rock for parallel multi-line tunnels with S/D

    图  10   多洞与双洞并行隧道围岩稳定系数Ncr对比曲线

    Figure  10.   Comparison for Ncr of parallel multi-and twin-line tunnels

    图  11   多洞与双洞并行隧道破坏模式对比

    Figure  11.   Comparison between collapse mechanism of parallel multi-and twin-line tunnels

  • [1] 姜功良. 浅埋软土隧道稳定性极限分析[J]. 土木工程学报, 1998, 31(5): 65-72. doi: 10.3321/j.issn:1000-131X.1998.05.002

    JIANG Gongliang. Limit analysis of the stability of shallow tunnels in soft ground[J]. China Civil Engineering Journal, 1998, 31(5): 65-72. (in Chinese) doi: 10.3321/j.issn:1000-131X.1998.05.002

    [2] 杨峰, 郑响凑, 赵炼恒, 等. 地表超载作用下隧道失稳破坏的上限有限元分析[J]. 岩土力学, 2015, 36(增刊2): 695-701.

    YANG Feng, ZHENG Xiangcou, ZHAO Lianheng, et al. Finite element upper bound analysis of tunnel instability under surcharge loading[J]. Rock and Soil Mechanics, 2015, 36(S2): 695-701. (in Chinese)

    [3] 杨峰, 阳军生, 赵炼恒. 浅埋隧道工作面破坏模式与支护反力研究[J]. 岩土工程学报, 2010, 32(2): 279-284. http://www.cgejournal.com/cn/article/id/12066

    YANG Feng, YANG Junsheng, ZHAO Lianheng. Collapse mechanism and support pressure for shallow tunnel face[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(2): 279-284. (in Chinese) http://www.cgejournal.com/cn/article/id/12066

    [4] 杨峰, 阳军生, 张学民, 等. 黏土不排水条件下浅埋隧道稳定性上限有限元分析[J]. 岩石力学与工程学报, 2010, 29(增刊2): 3952-3959. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2071.htm

    YANG Feng, YANG Junsheng, ZHANG Xuemin, et al. Finite element analysis of upper bound solution of shallow-buried tunnel stability in undrained clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 3952-3959. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2071.htm

    [5]

    YANG F, YANG J S. Stability of shallow tunnel using rigid blocks and finite-element upper bound solutions[J]. International Journal of Geomechanics, 2010, 10(6): 242-247. doi: 10.1061/(ASCE)GM.1943-5622.0000011

    [6] 黄茂松, 宋春霞, 吕玺琳. 非均质黏土地基隧道环向开挖面稳定上限分析[J]. 岩土工程学报, 2013, 35(8): 1504-1512. http://www.cgejournal.com/cn/article/id/15259

    HUANG Maosong, SONG Chunxia, LÜ Xilin. Upper bound analysis for stability of a circular tunnel in heterogeneous clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1504-1512. (in Chinese) http://www.cgejournal.com/cn/article/id/15259

    [7] 李艳祥, 蒋刚, 王旭东. 软土隧道支护压力与稳定性下限有限元分析[J]. 地下空间与工程学报, 2015, 11(6): 1558-1563.

    LI Yanxiang, JIANG Gang, WANG Xudong. Study on support pressure and stability of the tunnel face by finite element lower bound limit method[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(6): 1558-1563. (in Chinese)

    [8] 赵明华, 彭珩, 张锐. 方形隧道稳定性极限分析有限元数值模拟[J]. 公路交通科技, 2015, 32(5): 107-114. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201505018.htm

    ZHAO Minghua, PENG Heng, ZHANG Rui. FE numerical simulation for limit analysis of stability of square tunnel[J]. Journal of Highway and Transportation Research and Development, 2015, 32(5): 107-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201505018.htm

    [9]

    YANG F, ZHANG J, YANG J S, et al. Stability analysis of unlined elliptical tunnel using finite element upper-bound method with rigid translatory moving elements[J]. Tunnelling and Underground Space Technology, 2015, 50: 13-22.

    [10] 谢骏, 刘纯贵, 于海勇. 双平行圆形隧道稳定的塑性极限分析上限解[J]. 岩石力学与工程学报, 2006, 25(9): 1835-1841. doi: 10.3321/j.issn:1000-6915.2006.09.015

    XIE Jun, LIU Chungui, YU Haiyong. Upper bound solutions of plastic limit analysis for the stability of two parallel circular tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(9): 1835-1841. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.09.015

    [11] 吕绍文. 非关联流动法则对双线平行隧道上限解的影响分析[J]. 公路工程, 2014, 39(3): 260-263, 303. doi: 10.3969/j.issn.1674-0610.2014.03.060

    LÜ Shaowen. The influence analysis of non-associate flow rule on the upper limit solution of two parallel tunnels[J]. Highway Engineering, 2014, 39(3): 260-263, 303. (in Chinese) doi: 10.3969/j.issn.1674-0610.2014.03.060

    [12]

    OSMAN A S. Stability of unlined twin tunnels in undrained clay[J]. Tunnelling and Underground Space Technology, 2010, 25(3): 290-296.

    [13]

    YAMAMOTO K, LYAMIN A V, WILSON D W, et al. Stability of dual circular tunnels in cohesive-frictional soil subjected to surcharge loading[J]. Computer and Geotechnics, 2013, 50: 41-54.

    [14]

    SAHOO J P, KUMAR J. Stability of long unsupported twin circular tunnels in soils[J]. Tunnelling and Underground Space Technology, 2013, 38(9): 326-335.

    [15]

    ZHANG J, YANG F, YANG J S, et al. Upper-bound stability analysis of dual unlined elliptical tunnels in cohesive -frictional soils[J]. Computers and Geotechnics, 2016, 80: 283-289.

    [16]

    YANG F, ZHENG X C, ZHANG J, et al. Upper bound analysis of stability of dual circular tunnels subjected to surcharge loading in cohesive-frictional soils[J]. Tunnelling and Underground Space Technology, 2017, 61: 150-160.

    [17] 康石磊, 杨峰, 张箭, 等. 基于强度折减和上限有限元的椭圆形毛洞隧道围岩稳定性分析[J]. 湖南大学学报(自然科学版), 2015, 42(9): 104-109.

    KANG Shilei, YANG Feng, ZHANG Jian, et al. Finite element upper bound analysis of stability of unlined elliptical tunnel based on strength reduction method[J]. Journal of Hunan University (Natural Sciences), 2015, 42(9): 104-109. (in Chinese)

    [18]

    YANG J S, YAN L, DENG S J, et al. Interactions of four tunnels driven in squeezing fault zone of Wushaoling Tunnel[J]. Tunnelling and Underground Space Technology, 2006, 21(3-4): 359-359.

    [19]

    KIM S. Interaction behaviours between parallel tunnels in soft ground[J]. Tunnelling and Underground Space Technology, 2004, 19(4-5): 448.

    [20] 李友强, 郑大榕, 张辉, 等. 超小净距三洞并行地铁区间隧道的施工技术[J]. 现代隧道技术, 2004, 41(5): 27-31. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200405005.htm

    LI Youqiang, ZHENG Darong, ZHANG Hui, et al. Construction techniques of three parallel and super-closely-spaced running tunnels of a metro[J]. Modern Tunnelling Technology, 2004, 41(5): 27-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200405005.htm

    [21] 陈越峰, 张庆贺, 张颖, 等. 近距离三线并行盾构隧道施工实测分析[J]. 地下空间与工程学报, 2008, 4(2): 335-340.

    CHEN Yuefeng, ZHANG Qinghe, ZHANG Ying, et al. In-situ monitoring and analyzing on construction of three closely spaced parallel pipe shield tunnels[J]. Chinese Journal of Underground Space and Engineering, 2008, 4(2): 335-340. (in Chinese)

    [22] 王建国, 王渭明, 贺广良, 等. 大断面小净距三孔并行隧道施工方案优化[J]. 铁道建筑, 2018, 58(2): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201802014.htm

    WANG Jianguo, WANG Weiming, HE Guangliang, et al. Construction scheme optimum of three parallel tunnels with large section and small spacing[J]. Railway Engineering, 2018, 58(2): 51-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201802014.htm

    [23] 付钊, 柯宁静, 卢康明, 等. 深埋小净距多线平行盾构掘进相互作用分析[J]. 水文地质工程地质, 2021, 48(2): 44-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202102006.htm

    FU Zhao, KE Ningjing, LU Kangming, et al. An analysis of interaction of deep buried close approaching multi-line parallel shield tunneling[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 44-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202102006.htm

    [24] 王强, 谢雄耀, 黄钟晖, 等. 四线并行盾构隧道下穿火车站股道沉降特征研究[J]. 岩石力学与工程学报, 2017, 36(增刊2): 4235-4243.

    WANG Qiang, XIE Xiongyao, HUANG Zhonghui, et al. Study of settlement troughs over quadruple-tube parallel shield tunnels crossing railway tracks[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 4235-4243. (in Chinese)

    [25] 杨峰, 赵炼恒, 张箭, 等. 基于刚体平动运动单元的上限有限元研究[J]. 岩土力学, 2014, 35(6): 1782-1786, 1808. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201406042.htm

    YANG Feng, ZHAO Lianheng, ZHANG Jian, et al. Investigation on finite element upper bound solution based on rigid translatory moving element[J]. Rock and Soil Mechanics, 2014, 35(6): 1782-1786, 1808. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201406042.htm

  • 期刊类型引用(53)

    1. 张伟丽,李明依,李俊,钱程,陈宗武. 基于MICP技术的固化黏土抗侵蚀性能研究. 安全与环境工程. 2025(01): 201-210+232 . 百度学术
    2. 易文,杜撰文,黄盎峰,刘谭剑. 胶质芽孢杆菌改良煤矸石抗风蚀性能研究. 兰州交通大学学报. 2025(01): 1-9+38 . 百度学术
    3. 孔德玉,张凯凯,聂海波,倪彤元,郑忠波,陈乐也,张天翔. 微生物协同强化路基渣土的路用性能研究. 新型建筑材料. 2025(03): 1-5 . 百度学术
    4. 王修铭,陈群,陈秀吉,张利民,周成,万里. 微生物矿化对黏土渗透性影响的试验研究. 水利水电科技进展. 2024(01): 29-36 . 百度学术
    5. 吴建彬,谢永雄,李亚杰. MICP改性水泥土在地基加固中的应用研究. 广东土木与建筑. 2024(01): 5-8 . 百度学术
    6. 朱文羲,邓华锋,李建林,肖瑶,熊雨,程雷. 木质素磺酸钙增强花岗岩残积土微生物固化效果研究. 土木工程学报. 2024(03): 123-132 . 百度学术
    7. 张永杰,欧阳健,黄万东,刘涛,朱剑锋,陈剑华. 胶结液浓度对微生物固化花岗岩残积土强度特性的影响规律. 湖南大学学报(自然科学版). 2024(03): 121-129 . 百度学术
    8. 王巍智. 硫铝酸盐水泥砂浆的MICP修复试验研究. 河南科技. 2024(04): 79-87 . 百度学术
    9. 李日升. 基于尿素水解机制的微生物固化土体的影响因素分析. 广东土木与建筑. 2024(04): 23-31 . 百度学术
    10. 徐洪钟,王沐婉,沐红元,米健,吴永红. 微生物诱导碳酸钙沉积加固剧烈砂化白云岩实验研究. 清华大学学报(自然科学版). 2024(07): 1168-1178 . 百度学术
    11. 崔秀丽,李佳禧,谢佳旻,林军,庞书孟. 生物炭联合微生物矿化技术改善软土力学性能试验研究. 水利水电技术(中英文). 2024(07): 134-146 . 百度学术
    12. 郭晓东,李珍玉,黄莹,罗深平. 微生物改良膨胀土的动态回弹模量. 湖南城市学院学报(自然科学版). 2024(04): 1-7 . 百度学术
    13. 邢玮,周峰,朱锐,陈廷柱. 锌污染粉土微生物固化和稳定效果及其机理研究. 工业建筑. 2024(09): 32-42 . 百度学术
    14. 黎桉君,刘鹏,张静,汪时机,李贤,梅立奎,牛作鹏. 新型EICP注浆固化砂质黏性紫色土力学性能试验研究. 岩土工程学报. 2024(11): 2429-2438 . 本站查看
    15. 王浩,赖国正,夏传安,蔡晖,吴志刚. 微生物固土胶结液的尿素和氯化钙优化配比试验. 福州大学学报(自然科学版). 2024(06): 748-754 . 百度学术
    16. 欧阳以,彭成,李超. 脲酶抑制剂对微生物改良红黏土收缩特性的影响. 南华大学学报(自然科学版). 2024(06): 46-53+77 . 百度学术
    17. 王延宁,黄龙剑,李思侃,吴鸣. 一种估算MICP加固砂土体渗透系数的简便方法. 汕头大学学报(自然科学版). 2023(01): 3-12+2 . 百度学术
    18. 张瑾璇,黄明,刘子健. 南方湿热区新型产脲酶菌加固土体的效果研究. 工程地质学报. 2023(01): 113-123 . 百度学术
    19. 肖鹏,刘汉龙,史金权,何想,楚剑,肖杨. 微生物加固钙质砂地基动力响应特性研究. 岩土工程学报. 2023(06): 1303-1313 . 本站查看
    20. 刘庆,林军,谢佳旻,秦鹏飞. MICP复合材料固化软土一维固结试验及机理研究. 高校地质学报. 2023(03): 487-496 . 百度学术
    21. 吴尚彬 ,贾苍琴 ,王贵和 . 微生物土体改良技术研究综述. 桂林理工大学学报. 2023(02): 224-238 . 百度学术
    22. 黄万东,陈彪,张永杰,刘涛,程周鑫,邓齐全. 胶结液浓度对微生物固化花岗岩残积土特性试验研究. 湖南交通科技. 2023(03): 1-6 . 百度学术
    23. 范冬梅,何玉龙,刘冬梅,朱词,薛萍,薛海兵. 微生物诱导碳酸钙沉淀在土体改良中的应用. 价值工程. 2023(31): 121-125 . 百度学术
    24. 肖维民,傅业姗,钟建敏,林馨,李双. 岩石节理中MICP反应碳酸钙沉积演化规律试验研究. 岩石力学与工程学报. 2023(S2): 3851-3860 . 百度学术
    25. 陈欣,安然,汪亦显,陈昶. 胶结液浓度对MICP固化残积土力学性能影响及机理研究. 水利与建筑工程学报. 2023(06): 100-106+149 . 百度学术
    26. 崔昊,肖杨,孙增春,汪成贵,梁放,刘汉龙. 微生物加固砂土弹塑性本构模型. 岩土工程学报. 2022(03): 474-482 . 本站查看
    27. 周杨,张家铭,朱纪康,余梦. 基于原生微生物MICP的土体加固试验研究. 长江科学院院报. 2022(05): 132-139 . 百度学术
    28. 胡其志,舒晟,陶高梁,张帆. 微生物固化含黏粒花岗岩残积土的强度机理研究. 科学技术与工程. 2022(12): 4920-4927 . 百度学术
    29. 刘浩林,李丹,胡波,程展林. 基于MICP技术改良的膨胀土膨胀特性试验研究. 长江科学院院报. 2022(06): 150-156 . 百度学术
    30. 贺桂成,谢元辉,李咏梅,李春光,唐孟媛,张志军,伍玲玲. 微生物胶结砂岩型铀矿砂的抗渗性能试验研究. 岩土力学. 2022(09): 2504-2514+2524 . 百度学术
    31. 秦鹏飞,钟宏伟,陈晓红,刘恺亮. 隧道工程注浆理论与注浆技术研究新进展. 城市轨道交通研究. 2022(10): 103-108 . 百度学术
    32. 刘忠,肖水明,刘飞飞,龙文梁,张敏霞. 微生物诱导碳酸钙沉积固化建筑渣土抗风蚀扬尘影响因素的试验研究. 工业建筑. 2022(11): 71-78 . 百度学术
    33. 习智琴,李水生. 碱激发废渣固化原状盾构渣土力学特性研究. 地下空间与工程学报. 2022(S2): 611-618 . 百度学术
    34. 马国梁,何想,路桦铭,吴焕然,刘汉龙,楚剑,肖杨. 高岭土微粒固载成核微生物固化粗砂强度. 岩土工程学报. 2021(02): 290-299 . 本站查看
    35. 陈嘉辉,雷学文,张彬. 基于微生物诱导碳酸钙沉积(MICP)改善淤泥质土强度. 公路. 2021(03): 264-269 . 百度学术
    36. 胡其志,刘彻德,丁志刚,包文成. 降雨入渗对微生物注浆加固边坡的稳定性影响研究. 南方农机. 2021(08): 5-8+14 . 百度学术
    37. 余梦,张家铭,周杨,孙狂飙. MICP技术改性膨胀土试验研究. 长江科学院院报. 2021(05): 103-108+122 . 百度学术
    38. 陈嘉辉,雷学文,万勇,鲁龙钊,刘瑞琪. 微生物-电渗法加固淤泥质土的室内试验研究. 科学技术与工程. 2021(11): 4556-4561 . 百度学术
    39. 中国路基工程学术研究综述·2021. 中国公路学报. 2021(03): 1-49 . 百度学术
    40. 岳建伟,王巍智,朱耀冬. MICP技术改性古建筑灰浆实验研究. 河南大学学报(自然科学版). 2021(03): 289-298 . 百度学术
    41. 岳建伟,邢旋旋,孔庆梅,于跃,赵丽敏,徐向春. MICP改良灰浆物理性能的实验研究. 河南大学学报(自然科学版). 2021(04): 455-465 . 百度学术
    42. 胡其志,刘彻德,庄心善. 反硝化微生物固化砂土的试验研究. 湖北工业大学学报. 2021(04): 46-51 . 百度学术
    43. 何想,刘汉龙,韩飞,马国梁,赵常,楚剑,肖杨. 微生物矿化沉积时空演化的微流控芯片试验研究. 岩土工程学报. 2021(10): 1861-1869 . 本站查看
    44. 李赛,雷学文,刘磊,刘瑞琪. 玉米须加筋微生物固化淤泥的抗剪强度试验研究. 科学技术与工程. 2021(32): 13837-13844 . 百度学术
    45. 唐朝生,泮晓华,吕超,董志浩,刘博,王殿龙,李昊,程瑶佳,施斌. 微生物地质工程技术及其应用. 高校地质学报. 2021(06): 625-654 . 百度学术
    46. 许鹏旭,温智力,杨司盟,刘志明,冷勐,彭劼. 不同颗粒尺寸条件下MICP固化砂土的试验研究. 高校地质学报. 2021(06): 738-745 . 百度学术
    47. 何想,马国梁,汪杨,赵常,刘汉龙,楚剑,肖杨. 基于微流控芯片技术的微生物加固可视化研究. 岩土工程学报. 2020(06): 1005-1012 . 本站查看
    48. 刘建兴,李金柱,谢新宇,许纯泰,郑凌逶. MICP固化淤泥土的强度试验研究. 低温建筑技术. 2020(05): 17-20 . 百度学术
    49. 吴创周,楚剑,成亮,何稼. 微生物注浆地基处理技术研究进展. 地基处理. 2020(03): 181-186 . 百度学术
    50. 王绪民,崔芮,王铖. 营养盐浓度对胶结重塑泥岩试样力学特性及微观结构的影响试验研究. 土木与环境工程学报(中英文). 2020(04): 76-83 . 百度学术
    51. 蚁曼冰,王延宁,刘东,Ankit Garg,林鹏. 基于微生物诱导碳酸钙沉淀技术加固滨海软土的试验研究. 汕头大学学报(自然科学版). 2020(03): 47-54 . 百度学术
    52. 岳建伟,张宝玺,赵丽敏,孔庆梅,王思远. 改良MICP技术加固土体强度与养护天数的关系研究. 河南大学学报(自然科学版). 2020(06): 707-716 . 百度学术
    53. 陈哲,方祥位,刘汉龙,龙开荃,申春妮. 氧化镁掺量对氧化镁微生物固化电解锰废渣影响研究. 岩石力学与工程学报. 2020(S2): 3687-3695 . 百度学术

    其他类型引用(54)

图(11)
计量
  • 文章访问数:  302
  • HTML全文浏览量:  58
  • PDF下载量:  103
  • 被引次数: 107
出版历程
  • 收稿日期:  2022-02-24
  • 网络出版日期:  2023-05-18
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回