• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

高岭土微粒固载成核微生物固化粗砂强度

马国梁, 何想, 路桦铭, 吴焕然, 刘汉龙, 楚剑, 肖杨

马国梁, 何想, 路桦铭, 吴焕然, 刘汉龙, 楚剑, 肖杨. 高岭土微粒固载成核微生物固化粗砂强度[J]. 岩土工程学报, 2021, 43(2): 290-299. DOI: 10.11779/CJGE202102009
引用本文: 马国梁, 何想, 路桦铭, 吴焕然, 刘汉龙, 楚剑, 肖杨. 高岭土微粒固载成核微生物固化粗砂强度[J]. 岩土工程学报, 2021, 43(2): 290-299. DOI: 10.11779/CJGE202102009
MA Guo-liang, HE Xiang, LU Hua-ming, WU Huan-ran, LIU Han-long, CHU Jian, XIAO Yang. Strength of biocemented coarse sand with kaolin micro-particle improved nucleation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 290-299. DOI: 10.11779/CJGE202102009
Citation: MA Guo-liang, HE Xiang, LU Hua-ming, WU Huan-ran, LIU Han-long, CHU Jian, XIAO Yang. Strength of biocemented coarse sand with kaolin micro-particle improved nucleation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 290-299. DOI: 10.11779/CJGE202102009

高岭土微粒固载成核微生物固化粗砂强度  English Version

基金项目: 

国家自然科学基金项目 51922024

中央高校基本科研业务费项目 2019CDQYTM031

重庆市研究生科研创新项目 CYB19012

详细信息
    作者简介:

    马国梁(1990— ),男,博士研究生,主要从事微生物土加固机理方面的研究工作。E-mail:magl09@163.com

    通讯作者:

    肖杨, E-mail: hhuxyanson@163.com

  • 中图分类号: TU43

Strength of biocemented coarse sand with kaolin micro-particle improved nucleation

  • 摘要: 提出一种基于微粒固载成核的微生物固化技术(MICPMPIN),用于改善微生物诱导碳酸钙沉淀(MICP)固化粗砂的力学特性,即在灌浆前给菌液中加入一定量的高岭土形成微生物固载胶体,然后将微生物固载胶体与反应液混合形成MICP浆体(MICPCS),利用自重渗流法加固粗砂。试验结果表明新型MICPMPIN固化粗砂的强度比传统MICP固化粗砂的强度高。其他条件相同时,MICPMPIN固化粗砂的强度随高岭土掺量的增加而增加,随微生物固载胶体含量的增大而增加,且每间隔1次灌入MICPCS时固化粗砂的强度较高。高岭土本身提供的胶结强度不能使砂柱成型,可忽略不计,其作用主要是辅助成核,增加有效碳酸钙沉淀量,并减小试样孔隙比从而增强固化粗砂的效果。MICPMPIN固化粗砂的湿强度也大于传统MICP固化粗砂的湿强度,且高岭土的掺入显著增强了固化粗砂的抗软化能力。
    Abstract: A new treatment, microbially induced calcium carbonate precipitation (MICP) with micro-particle improved nucleation (MICPMPIN), is introduced to improve the performance of MICP technology for the stabilization of coarse sand. A certain amount of kaolin is augmented into the bacterial suspensions to obtain immobilized bacterial slurry, then the bacterial slurry is mixed with cementation solution to form MICP-clay slurry (MICPCS) and percolated through the coarse-sand specimens under gravity. The results show that the unconfined compressive strength (UCS) of MICPMPIN-treated specimens is higher than that of MICP-treated ones. When other conditions are the same, the UCS increases with the increasing dosage of kaolin and volume ratio of immobilized bacterial slurry. The specimens with higher UCS can be obtained by grouting MICPCS every two cycles. The cementation of pure kaolin is so small that the stabilized specimen cannot be a solid. The main contribution for the higher UCS of kaolin is the nucleation that is formed by kaolin, the increment in the amount of effective precipitates, and the decrement in the amount of pore. The wet UCS of the MICPMPIN-treated specimens is larger than that of the conventional MICP treated ones, and the softening resistance is also improved by adding kaolin into the MICP process.
  • 图  1   试验材料

    Figure  1.   Test materials

    图  2   制样模具

    Figure  2.   Moulds for preparating specimens

    图  3   MICPMPIN固化粗砂试样的无侧限抗压强度

    Figure  3.   UCS of MICPMPIN-treated coarse sand specimens

    图  4   碳酸钙沉淀量及沉淀效率

    Figure  4.   CaCO3 contents and precipitation efficiency

    图  5   MICPMPIN固化粗砂高岭土沉淀量

    Figure  5.   Kaolin contents of MICPMPIN-treated specimens

    图  6   高岭土及碳酸钙沿试样高度分布(间隔1次注入MICPCS,微生物固载胶体含量1/2)

    Figure  6.   Distribution of kaolin and CaCO3 along height of specimens (injecting MICPCS with 1/2 immobilized bacterial slurry every 2 times)

    图  7   MICPMPIN固化粗砂试样(间隔1次注入MICPCS,微生物固载胶体含量1/2)的微观结构及其物质组成

    Figure  7.   Microstructure and chemical composition of MICPMPIN-treated coarse-sand specimens (injecting MICPCS with 1/2 immobilized bacterial slurry every 2 times)

    图  8   高岭土沉淀量对无侧限抗压强度的影响

    Figure  8.   Effects of kaolin content on UCS

    图  9   菌液浓度对无侧限抗压强度的影响

    Figure  9.   Effects of bacterial density on UCS

    图  10   高岭土固化试样

    Figure  10.   Kaolin-stabilized specimens

    图  11   浸泡对MICPMPIN固化粗砂强度的影响

    Figure  11.   Effects of immersion on UCS of MICPMPIN-stabilized coarse sand

    表  1   MICPCS参数

    Table  1   Parameters of MICP-clay slurry

    微生物固载胶体含量微生物固载胶体体积/mL反应液体积/mL反应液浓度/(mol·L-1)MICP浆体浓度/(mol·L-1)
    1/225.025.02.001.00
    1/412.537.51.341.00
    1/105.045.01.111.00
    下载: 导出CSV

    表  2   MICPMPIN加固粗砂试验设计

    Table  2   Test design for stabilizing coarse sand by MICPMPIN

    间隔次数高岭土质量浓度/(g·L-1)
    0102040100
    0
    1
    3
    下载: 导出CSV
  • [1] 何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm

    HE Jia, CHU Jian, LIU Han-long, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm

    [2]

    DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al. Bio-mediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210. doi: 10.1016/j.ecoleng.2008.12.029

    [3]

    XIAO Y, CHEN H, STUEDLEIN A W, et al. Restraint of particle breakage by biotreatment method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(11): 04020123. doi: 10.1061/(ASCE)GT.1943-5606.0002384

    [4] 刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm

    LIU Han-long, XIAO Peng, XIAO Yang, et al. State-of-the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environme- ntal Engineering, 2019, 41(1): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm

    [5] 钱春香, 王安辉, 王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6): 1537-1548. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506003.htm

    QIAN Chun-xiang, WANG An-hui, WANG Xin. Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics, 2015, 36(6): 1537-1548. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506003.htm

    [6] 彭劼, 冯清鹏, 孙益成. 温度对微生物诱导碳酸钙沉积加固砂土的影响研究[J]. 岩土工程学报, 2018, 40(6): 1048-1055. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201806012.htm

    PENG Jie, FENG Qing-peng, SUN Yi-cheng. Influences of temperatures on MICP-treated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1048-1055. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201806012.htm

    [7] 孙潇昊, 缪林昌, 吴林玉, 等. 低温条件微生物MICP沉淀产率试验研究[J]. 岩土工程学报, 2019, 41(6): 1133-1138.

    SUN Xiao-hao, MIAO Lin-chang, WU Lin-yu, et al. Experimental study on precipitation rate of MICP under low temperatures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1133-1138. (in Chinese)

    [8] 王旭民, 郭伟, 余飞, 等. 营养盐浓度对胶结砂物理力学特性试验研究[J]. 岩土力学, 2016, 37(增刊2): 363-374. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2046.htm

    WANG Xu-ming, GUO Wei, YU Fei, et al. Experimental study of effect of nutrient concentration on physico-mechanical properties of cemented sand[J]. Rock and Soil Mechanics, 2016, 37(S2): 363-374. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2046.htm

    [9] 程晓辉, 麻强, 杨钻, 等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(8): 1486-1495. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308017.htm

    CHENG Xiao-hui, MA Qiang, YANG Zuan, et al. Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1486-1495. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308017.htm

    [10] 张鑫磊, 陈育民, 张喆, 等. 微生物灌浆加固可液化钙质砂地基的振动台试验研究[J]. 岩土工程学报, 2020, 42(6): 1023-1031. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006007.htm

    ZHANG Xin-lei, CHEN Yu-min, ZHANG Zhe, et al. Performance evaluation of liquefaction resistance of a MICP-treated calcareous sandy foundation using shake table tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1023-1031. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006007.htm

    [11] 马瑞男, 郭红仙, 程晓辉, 等. 微生物拌和加固钙质砂渗透特性试验研究[J]. 岩土力学, 2018, 39(增刊2): 217-223. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2031.htm

    MA Rui-nan, GUO Hong-xian, CHENG Xiao-hui, et al. Permeability experiment study of calcareous sand treated by microbially induced carbonate precipitation using mixing methods[J]. Rock and Soil Mechanics, 2018, 39(S2): 217-223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2031.htm

    [12] 李贤, 汪时机, 何丙辉, 等. 土体适用MICP 技术的渗透特性条件研究[J]. 岩土力学, 2019, 40(8): 2956-2974. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908010.htm

    LI Xian, WANG Shi-ji, HE Bing-hui, et al. Permeability condition of soil suitable for MICP method[J]. Rock and Soil Mechanics, 2019, 40(8): 2956-2974. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908010.htm

    [13] 支永艳, 邓华锋, 肖瑶, 等. 微生物灌浆加固裂隙岩体的渗流特性分析[J]. 岩土力学, 2019, 40(增刊1): 237-244. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1036.htm

    ZHI Yong-yan, DENG Hua-feng, XIAO Yao, et al. Analysis of seepage characteristics of fractured rock mass reinforced by microbial grouting[J]. Rock and Soil Mechanics, 2019, 40(S1): 237-244. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1036.htm

    [14] 李驰, 王硕, 王燕星, 等. 沙漠微生物矿化覆膜及其稳定性的现场试验研究[J]. 岩土力学, 2019, 40(4): 1291-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904007.htm

    LI Chi, WANG Shuo, WANG Yan-xing, et al. Field experimental study on stability of bio-mineralization crust in the desert[J]. Rock and Soil Mechanics, 2019, 40(4): 1291-1298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904007.htm

    [15] 欧孝夺, 莫鹏, 江杰, 等. 生石灰与微生物共同固化过湿性铝尾黏土试验研究[J]. 岩土工程学报, 2020, 42(4): 624-631. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004007.htm

    OU Xiao-duo, MO Peng, JIANG Jie, et al. Experimental study on solidification of bauxite tailing clay with quicklime and microorganism[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 624-631. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004007.htm

    [16] 刘士雨, 俞缙, 韩亮, 等. 三合土表面微生物诱导碳酸钙沉淀耐水性试验研究[J]. 岩石力学与工程学报, 2019, 38(8): 1718-1728. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201908022.htm

    LIU Shi-yu, YU Jin, HAN Liang, et al. Experimental study on water resistance of tabia surface with microbially induced carbonate precipitation[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(8): 1718-1728. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201908022.htm

    [17] 黄明, 张瑾璇, 靳贵晓, 等. 残积土 MICP 灌浆结石体冻融损伤的核磁共振特性试验研究[J]. 岩石力学与工程学报, 2018, 37(12): 2846-2855. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201812020.htm

    HUANG Ming, ZHANG Jin-xuan, JIN Gui-xiao, et al. Magnetic resonance image experiments on the damage feature of microbial induced calcite precipitated residual soil during freezing-thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(12): 2846-2855. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201812020.htm

    [18] 彭劼, 温智力, 刘志明, 等. 微生物诱导碳酸钙沉积加固有机质黏土的试验研究[J]. 岩土工程学报, 2019, 41(4): 733-740. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904022.htm

    PENG Jie, WEN Zhi-li, LIU Zhi-ming, et al. Experimental research on MICP-treated organic clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 733-740. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904022.htm

    [19] 桂跃, 吴承坤, 刘颖伸, 等. 利用微生物技术改良泥炭土工程性质试验研究[J]. 岩土工程学报, 2020, 42(2): 269-278. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002011.htm

    GUI Yue, WU Cheng-kun, LIU Ying-shen, et al. Improving engineering properties of peaty soil by biogeotechnology[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 269-278. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002011.htm

    [20]

    HOLTZ R D, KOVACS W D. An Introduction to Geotechnical Engineering[M]. Englewood Cliffs: Prentice-Hall, 1983.

    [21]

    AMARAKOON G G N N, KAWASAKI S. Factors Affecting the Improvement of Sand Properties Treated with Microbially-Induced Calcite Precipitation[C]//Geo-Chicago, 2016, Chicago.

    [22] 崔明娟, 郑俊杰, 赖汉江. 颗粒粒径对微生物固化砂土强度影响的试验研究[J]. 岩土力学, 2016, 37(增刊2): 397-402. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2051.htm

    CUI Ming-juan, ZHENG Jun-jie, LAI Han-jiang. Experimental study of effect of particle size on strength of bio-cemented sand[J]. Rock and Soil Mechanics, 2016, 37(S2): 397-402. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2051.htm

    [23]

    MWANDIRA W, NAKASHIMA K, KAWASAKI S. Bioremediation of lead-contaminated mine waste by pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand[J]. Ecological Engineering, 2017, 109: 57-64.

    [24]

    HOANG T, ALLEMAN J, CETIN B, et al. Engineering properties of biocementation coarse- and fine-grained sand catalyzed by bacterial cells and bacterial enzyme[J]. Journal of Materials in Civil Engineering, 2020, 32(4): 04020030.

    [25]

    MAHAWISH A, BOUAZZA A, GATES W P. Effect of particle size distribution on the bio-cementation of coarse aggregates[J]. Acta Geotechnica, 2018, 13(4): 1019-1025.

    [26]

    REBATA-LANDA V. Microbial Activity in Sediments: Effects on Soil Behavior[D]. Atlanta: Civil and Environmental Engineering, Georgia Institute of Technology, 2007.

    [27] 尹黎阳, 唐朝生, 谢约翰, 等. 微生物矿化作用改善岩土材料性能的影响因素[J]. 岩土力学, 2019, 40(7): 2525-2546. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907007.htm

    YING Li-yang, TANG Chao-sheng, XIE Yue-han, et al. Factors affecting improvement in engineering properties of geomaterials by microbial-induced calcite precipitation[J]. Rock and Soil Mechanics, 2019, 40(7): 2525-2546. (In Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907007.htm

    [28]

    PAN X, CHU J, YANG Y, et al. A new biogrouting method for fine to coarse sand[J]. Acta Geotechnica, 2020, 15(1): 1-16.

    [29]

    WU C, CHU J, CHENG L, et al. Biogrouting of aggregates using premixed injection method with or without pH adjustment[J]. Journal of Materials in Civil Engineering, 2019, 31(9): 06019008.

    [30]

    MAHAWISH A, BOUAZZA A, GATES W P. Biogrouting coarse materials using soil-lift treatment strategy[J]. Canadian Geotechnical Journal, 2016, 53(12): 2080-2085.

    [31]

    MAHAWISH A, BOUAZZA A, GATES W P. Improvement of coarse sand engineering properties by microbially induced calcite precipitation[J]. Geomicrobiology Journal, 2018, 35(10): 887-897.

    [32]

    MAHAWISH A, BOUAZZA A, GATES W P. Factors affecting the bio-cementing process of coarse sand[J]. Proceedings of the Institution of Civil Engineers - Ground Improvement, 2018, 172(1): 25-36.

    [33] 欧益希, 方祥位, 申春妮, 等. 颗粒粒径对微生物固化珊瑚砂的影响[J]. 水利与建筑工程学报, 2016, 14(2): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS201602007.htm

    OU Yi-xi, FANG Xiang-wei, SHEN Chun-ni, et al. Influence of particle sizes of coral sand on bio-cementation[J]. Journal of Water Resources and Architectural Engineering, 2016, 14(2): 35-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS201602007.htm

    [34]

    CHENG L, SHAHIN M A. Urease active bioslurry: a novel soil improvement approach based on microbially induced carbonate precipitation[J]. Canadian Geotechnical Journal, 2016, 53(9): 1376-1385.

    [35]

    DHAMI N K, MUKHERJEE A, REDDY M S. Viability of calcifying bacterial formulations in fly ash for applications in building materials[J]. Journal of Industrial Microbiology and Biotechnology, 2013, 40(12): 1403-1413.

    [36]

    ZHAO Y, FAN C, LIU P, et al. Effect of activated carbon on microbial-induced calcium carbonate precipitation of sand[J]. Environmental Earth Sciences, 2018, 77(17): 615.

    [37] 谢约翰, 唐朝生, 尹黎阳, 等. 纤维加筋微生物固化砂土的力学特性[J]. 岩土工程学报, 2019, 41(4): 675-682. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904014.htm

    XIE Yue-han, TANG Chao-sheng, YIN Li-yang, et al. Mechanical behavior of microbial-induced calcite precipitation (MICP)-treated soil with fiber reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 675-682. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904014.htm

    [38] 郑俊杰, 宋杨, 吴超传, 等. 玄武岩纤维加筋微生物固化砂力学特性试验[J]. 华中科技大学学报(自然科学版), 2019, 47(12): 73-78.

    ZHENG Jun-jie, SONG Yang, WU Chao-chuan, et al. Experimental study on mechanical properties of basalt fiber reinforced MICP-treated sand[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(12): 73-78. (In Chinese)

    [39]

    XIAO Y, HE X, EVANS T M, et al. Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019048.

    [40]

    WHIFFIN V S. Microbial CaCO3 Precipitation for the Production of Biocement[D]. Perth: Murdoch University, 2004.

    [41]

    MA G, HE X, JIANG X, et al. Strength and permeability of bentonite-assisted biocemented coarse sand[J/OL]. Canadian Geotechnical Journal, 2020. doi: 10.1139/cgj-2020-0045.

    [42]

    XIAO Y, LIU H, NAN B, et al. Gradation-dependent thermal conductivity of sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(9): 06018010.

    [43]

    ZHAO Q, LI L, LI C. Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease[J]. Journal of Materials in Civil Engineering, 2014, 26(12): 4014094.

    [44]

    CHOU C W, SEAGREN E A, AYDILEK A H. Biocalcification of sand through ureolysis[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(12): 1179-1189.

    [45]

    CHENG L, QIAN C X, WANG R X. Study on the mechanism of calcium carbonate formation induced by carbonate-mineralization microbe[J]. Acta Chimica Sinica, 2007, 65(19): 2133-2138.

    [46] 何想, 马国梁, 汪杨, 等. 基于微流控芯片技术的微生物加固可视化研究[J]. 岩土工程学报, 2020, 42(6): 1005-1012. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006005.htm

    HE Xiang, MA Guo-liang, WANG Yang, et al. Visualization investigation of bio-cementation process based on microfludics[J]. Chinese Journal of Geotechnical Engineering, 2019, 42(6): 1005-1012. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006005.htm

    [47]

    THAWADI A S, CORD-RUWISCH R. Calcium carbonate crystals formation by ureolytic bacteria isolated from australian soil and sludge[J]. Journal of Advanced Science & Engineering Research, 2012, 2(1): 12-26.

    [48]

    MULLINS C E, PANAYIOTOPOULOS . The strength of unsaturated mixtures of sand and kaolin and the concept of effective stress[J]. Journal of Soil Science, 1984, 35: 459-468.

    [49]

    XU H, ZHOU M, FANG Y, et al. Effect of mica and hematite (001) surfaces on the precipitation of calcite[J]. Minerals, 2018, 8(1): 17.

    [50] 郭佳奇, 刘希亮, 乔春生. 自然与饱水状态下岩溶灰岩力学性质及能量机制试验研究[J]. 岩石力学与工程学报, 2014, 33(2): 296-308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201402011.htm

    GUO Jia-qi, LIU XI-liang, QIAO Chun-sheng. Experimental study of mechanical properties and energy mechanism of karst limestone under natural and saturated states[J]. Chiniese Journal of Rock Mechanics and Engineering, 2014, 33(2): 296-308. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201402011.htm

  • 期刊类型引用(9)

    1. 王睿,王兰民,周燕国,王刚. 土动力学与岩土地震工程. 土木工程学报. 2024(07): 71-89+105 . 百度学术
    2. 袁近远,崔家伟,李兆焱,袁晓铭,张钰洋. 中国模式下砾性土液化指数评价新方法. 土木工程学报. 2024(09): 98-108 . 百度学术
    3. 徐斌,王星亮,庞锐,陈柯好. 考虑组构演化的砂砾土弹塑性本构模型. 岩土力学. 2024(11): 3197-3211 . 百度学术
    4. 王家全,祝梦柯,林志南,梁宁. 细粒含量对饱和砾性土静动力学特性的影响. 土木工程学报. 2023(05): 112-121 . 百度学术
    5. 邢明源,胡欣宇. 基于神经网络模型的砾性土液化预测. 华北科技学院学报. 2021(03): 75-80 . 百度学术
    6. 付大庆,董德学,张修磊,孙浩东,史振铜,白书昕. 弥河朐山拦河闸砾石液化探讨. 水利技术监督. 2021(09): 162-166 . 百度学术
    7. 王海,王永志,汤兆光,袁晓铭,段雪锋. 剪切波速-相对密度联合试验与经验公式验证. 地下空间与工程学报. 2021(06): 1881-1887 . 百度学术
    8. 黄茂松,边学成,陈育民,王睿,顾晓强,周燕国. 土动力学与岩土地震工程. 土木工程学报. 2020(08): 64-86 . 百度学术
    9. 王世岐,张向阳,魏峰先,王健. 逐一土层进行液化等级判别初探. 工程勘察. 2020(12): 27-29 . 百度学术

    其他类型引用(7)

图(11)  /  表(2)
计量
  • 文章访问数:  482
  • HTML全文浏览量:  34
  • PDF下载量:  202
  • 被引次数: 16
出版历程
  • 收稿日期:  2020-06-24
  • 网络出版日期:  2022-12-04
  • 刊出日期:  2021-01-31

目录

    /

    返回文章
    返回