• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

天然岩体结构面粗糙度各向异性、尺寸效应、间距效应研究

葛云峰, 唐辉明, 王亮清, 赵斌滨, 吴益平, 熊承仁

葛云峰, 唐辉明, 王亮清, 赵斌滨, 吴益平, 熊承仁. 天然岩体结构面粗糙度各向异性、尺寸效应、间距效应研究[J]. 岩土工程学报, 2016, 38(1): 170-179. DOI: 10.11779/CJGE201601019
引用本文: 葛云峰, 唐辉明, 王亮清, 赵斌滨, 吴益平, 熊承仁. 天然岩体结构面粗糙度各向异性、尺寸效应、间距效应研究[J]. 岩土工程学报, 2016, 38(1): 170-179. DOI: 10.11779/CJGE201601019
GE Yun-feng, TANG Hui-ming, WANG Liang-qing, ZHAO Bin-bin, WU Yi-ping, XIONG Cheng-ren. Anisotropy, scale and interval effects of natural rock discontinuity surface roughness[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 170-179. DOI: 10.11779/CJGE201601019
Citation: GE Yun-feng, TANG Hui-ming, WANG Liang-qing, ZHAO Bin-bin, WU Yi-ping, XIONG Cheng-ren. Anisotropy, scale and interval effects of natural rock discontinuity surface roughness[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 170-179. DOI: 10.11779/CJGE201601019

天然岩体结构面粗糙度各向异性、尺寸效应、间距效应研究  English Version

基金项目: 国家自然科学基金项目(41230637,41272309); 中央高校基本科研业务费专项资金项目(CUGL150822); 中国博士后基金项目(2015M570672); 岩土钻掘与防护教育部工程研究中心开放研究基金项目(201502)
详细信息
    作者简介:

    葛云峰(1985- ),男,讲师,主要从事地质灾害预测与防治、工程岩土体稳定性方面的教学和科研。

Anisotropy, scale and interval effects of natural rock discontinuity surface roughness

  • 摘要: 为了研究天然岩体结构面粗糙度评价结果影响因素,以重庆武隆地区大尺寸岩体结构面为例,运用三维激光扫描技术,基于Grasselli改进法描述粗糙度在不同采样方向、尺度与精度下的变化规律。结果显示:所选用的天然岩体结构面具有明显的各向异性、正尺寸效应和间距效应,因此在进行粗糙度评价时,采样方向务必与剪切方向保持一致,采样尺寸与采样间距应大于等于和小于等于有效采样尺寸与间距;为便于不同评价方法间结果对比,应保证在相同的采样参数下开展研究。
    Abstract: To estimate the influence factors on the natural rock discontinuity roughness, taking an in-situ large scale rock collected in Wulong County, Chongqing City as an example, the variation rules of roughness under different sampling directions, sizes and precisions are analyzed by using the 3D laser scanning technology, and Grasselli’s method is improved through discretization of rock discontinuity into a large amount of quadrangular tiny planes rather than triangular planes. The results show that the natural rock discontinuities considered herein are characterized by obvious anisotropies, positive scale effects and interval effects. Therefore, the sampling direction with respect to roughness data acquisition should be kept the same with the shearing direction (direction of rock mass movement) in the procedure of roughness evaluation. In addition, the sampling size is specified to be equal to or larger than the effective sampling size, while the sampling interval should be equal to or less than the effective sampling interval. For the convenient comparison among the assessed results by different methods, this kind of study should be performed under the same sampling parameters including sampling directions, sizes and intervals.
  • [1] AMERICAN, BARTON N. Review of a new shear - strength criterion for rock joints[J]. Engineering Geology, 1973, 7(4): 287-332.
    [2] WU T H, ALI E M. Statistical representation of joint roughness[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1978, 15(5): 259-262.
    [3] TSE R, CRUDEN D M. Estimating joint roughness coefficients[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1979, 16(2): 303-307.
    [4] MAERZ N H, FRANKLIN J A, BENNETT C P. Joint roughness measurement using shadow profilometry[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1990, 27(5): 329-343.
    [5] BELEM T, ETIENNE F H, SOULEY M. Quantitative parameters for rock joint surface roughness[J]. Rock Mechanics and Rock Engineering, 2000, 33(4): 217-242.
    [6] CLARK K C. Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method [J]. Computers and Geoscience, 1986(12): 713-722.
    [7] TURK N, GREIG M J, DEARMAN W R, et al. Characterization of rock joint surfaces by fractal dimension [C]// The 28th US Symposium on Rock Mechanics (USRMS). Rotterdam: A. A. Balkema, 1987.
    [8] ODLING N E. Natural fracture profiles, fractal dimension and joint roughness coefficients[J]. Rock Mechanics and Rock Engineering, 1994(27): 135-153.
    [9] XIE H P, WANG J A, STEIN E. Direct fractal measurement and multifractal properties of fracture surface[J]. Physics Letters A, 1998, A242: 41-50.
    [10] KULATILAKE P H S W, BALASINGAM P, PARK J, et al. Natural rock joint roughness quantification through fractal techniques[J]. Geotechnical and Geological Engineering, 2006, 24(5): 1181-1202.
    [11] BABANOURI N, KARIMI NS, SARAFRAZI S. A hybrid particle swarm optimization and multi-layer perceptron algorithm for bivariate fractal analysis of rock fractures roughness[J]. International Journal of Rock Mechanics and Mining Sciences, 2013(60): 66-74.
    [12] GRASSELLI G. Shear strength of rock joints based on quantified surface description[D]. Lausanne: Swiss Federal Institute of Technology, 2001.
    [13] 葛云峰, 唐辉明, 黄 磊, 等. 岩体结构面三维粗糙度系数表征新方法[J]. 岩石力学与工程学报, 2012, 31(12): 2508-2517. (GE Yun-feng, TANG Hui-ming, HUANG Lei, et al. A new representation method for three-dimensional joint roughness coefficient of rock joint[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2508-2517. (in Chinese))
    [14] PARK J W, SONG J J. Numerical method for the determination of contact areas of a rock joint under normal and shear loads[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 58: 8-22.
    [15] JIANG Y J, LI B, TANABASHI Y. Estimating the relation between surface roughness and mechanical properties of rock joints[J]. International Journal of Rock Mechanics & Mining Sciences, 2006, 43(6): 837-846.
    [16] TATONE B S A, GRASSELLI G. An investigation of discontinuity roughness scale dependency using high-resolution surface measurements[J]. Rock Mechanics and Rock Engineering, 2013, 46: 657-681.
    [17] 夏才初. 岩石结构面的表面形态特征研究[J]. 工程地质学报, 1996, 4(3): 71-78. (XIA Cai-chu. A study on the surface morphological feathers of rock structural faces[J]. Journal of Engineering Geology, 1996, 4(3): 71-78. (in Chinese))
    [18] 杜时贵, 陈 禹, 樊良本. JRC修正直边法的数学表达[J]. 工程地质学报, 1996, 4(2): 36-43. (DU Shi-gui, CHEN Yu, FAN Liang-ben. Mathematical expression of JRC modified straight edge[J]. Journal of Engineering Geology, 1996, 4(2): 36-43. (in Chinese))
    [19] FARDIN N. Influence of structural non-stationarity of surface roughness on morphological characterization and mechanical deformation of rock joint[J]. Rock Mechanics Rock Engineering, 2008, 41(2): 267-297.
    [20] CRAVERO M, IABICHINO G, FERRERO A M. Evaluation of joint roughness and dilatancy of schistosity joints[C]// Rock Mechanics-a Challenge for Society: Processing of Eurock 2011. Rotterdam: A A Balkema, , 2001: 217-222.
    [21] SWAN J, ZONGQI S. Prediction of shear behavior of joints using profiles[J]. Rock Mechanics Rock Engineering, 1985, 18(3): 183-212.
    [22] KUTTER H K, OTTO F. Influence of parallel and cross-joints on shear behavior of rock discontinuities[C]// Rock Joints. Rotterdam: A A Balkema, 1990: 243-250.
    [23] GIANI G P, FERRERO A M, PASSARELLO G, et al. Scale effect evaluation on natural discontinuity shear strength[C]// Processing of the Conference on Fractured and Jointed Rock Masses. Rotterdam: A A Balkema, 1992: 447-452.
    [24] HENCHER S R, TOY J P, LUMSDEN A C. Scale-dependent shear strength of rock joints[C]// Scale Effects in Rock Masses 93; Processing of the 2nd International Workshop on Scale Effects in Rock Masses. Rotterdam: A A Balkema, 1993: 233-240.
    [25] OHNISHI Y, YOSHINAKA R. Laboratory investigation of scale effect in mechanical behavior of rock[C]// Processing of the Conference on Fractured and Jointed Rock Masses. Rotterdam: A A Balkema, 1992: 465-477.
    [26] TANG H M, GE Y F, WANG L Q, et al. Study on estimation method of rock mass discontinuity shear strength based on three-dimensional laser scanning and image technique[J]. Journal of Earth Science, 2012, 23(6): 908-913.
    [27] GE Y F, KULATILAKE P H S W, TANG H M, et al. Investigation of natural rock joint roughness[J]. Computers and Geotechnics, 2014, 55: 290-305.
    [28] 葛云峰. 基于BAP的岩体结构面粗糙度与峰值抗剪强度研究[D]. 武汉: 中国地质大学, 2014. (GE Yun-feng. Research on roughness and peak shear strength for rock discontinuities based on BAP[D]. Wuhan: China University of Geosciences, 2014. (in Chinese))
    [29] 俞 缙, 赵晓豹, 赵维炳, 等. 改进的岩石节理弹性非线性法向变形本构模型研究[J]. 岩土工程学报, 2008, 30(9): 1316-1321. (YU Jin, ZHAO Xiao-bao, ZHAO Wei-bing, et al. Improved nonlinear elastic constitutive model for normal deformation of rock fractures[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1316-1321. (in Chinese))
    [30] 唐志成, 刘泉声, 刘小燕. 节理的剪切力学性质与含三维形貌参数的剪切强度准则比较研究[J]. 岩土工程学报, 2014, 36(5): 873-879. (TANG Zhi-cheng, LIU Quan-sheng, LIU Xiao-yan. Shear behavior of rock joints and comparative study on shear strength criteria with three-dimensional morphology parameters[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 873-879. (in Chinese))
  • 期刊类型引用(15)

    1. 杨舒涵,漆天奇,刘嘉英. 堆石料宏细观力学特性离散元分析. 人民长江. 2024(02): 203-210 . 百度学术
    2. LI Shuai,GU Tianfeng,WANG Jiading,WANG Fei,LI Pu. Regulation effect of the grille spacing of a funnel-type grating water–sediment separation structure on the debris flow performance. Journal of Mountain Science. 2024(07): 2283-2304 . 必应学术
    3. 王辉,钮新强,马刚,周伟. 干湿循环作用下堆石料宏细观力学特性的离散元模拟研究. 岩土力学. 2024(S1): 665-676 . 百度学术
    4. 张江浩,冀鸿兰,杨震,李志军,刘晓民. 冻融循环下黄河堤岸砂质壤土宏细观破坏过程. 河海大学学报(自然科学版). 2024(06): 69-80 . 百度学术
    5. 黄志刚,王轩,傅力,童立红. 加载速率和摩擦系数对颗粒材料系统剪切强度的影响研究. 力学季刊. 2024(04): 1032-1042 . 百度学术
    6. 栗培龙,宿金菲,孙胜飞,王霄,马云飞. 多级矿料-沥青体系的颗粒特性、界面效应及迁移行为研究进展. 中国公路学报. 2023(01): 1-15 . 百度学术
    7. 王伟,张志义,赵博. 煤矿井下风积沙箱式充填体侧向约束机理数值研究. 新疆大学学报(自然科学版)(中英文). 2023(03): 367-372 . 百度学术
    8. 肖浩波,漆天奇,杨舒涵,周伟,刘嘉英. 椭球颗粒体系宏、细观特性的3维离散元分析. 工程科学与技术. 2023(06): 78-86 . 百度学术
    9. 张革,曹玲,王成汤. 考虑各向异性影响的冻土修正线性黏结接触模型开发及应用. 岩土力学. 2023(S1): 645-654 . 百度学术
    10. 郑虎,牛文清,毛无卫,黄雨. 颗粒材料双轴压缩试验的光弹测试. 同济大学学报(自然科学版). 2023(11): 1719-1724 . 百度学术
    11. 王怡舒,刘斯宏,沈超敏,陈静涛. 接触摩擦对颗粒材料宏细观力学特征和能量演变规律的影响. 岩石力学与工程学报. 2022(02): 412-422 . 百度学术
    12. 雷云,刘源,徐同桐,何子苗. 粒间摩擦和层厚比对二维分层颗粒系统底部响应的影响. 科学技术与工程. 2022(07): 2585-2591 . 百度学术
    13. 刘嘉英,周伟,姬翔,魏纲,袁思莹,李欣骏. 基于细观拓扑结构演化的颗粒材料剪胀性分析. 力学学报. 2022(03): 707-718 . 百度学术
    14. 蒋明杰,栗书亚,吉恩跃,张小勇,朱俊高. 粗粒土大型静止侧压力系数测定试验的颗粒流模拟. 科学技术与工程. 2021(25): 10867-10872 . 百度学术
    15. 崔溦,魏杰,王超,王枭华,张社荣. 考虑颗粒级配和形态的颗粒柱坍塌特性离散元模拟. 岩土工程学报. 2021(12): 2230-2239 . 本站查看

    其他类型引用(14)

计量
  • 文章访问数:  568
  • HTML全文浏览量:  4
  • PDF下载量:  648
  • 被引次数: 29
出版历程
  • 收稿日期:  2015-03-12
  • 发布日期:  2016-01-19

目录

    /

    返回文章
    返回