• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GE Yun-feng, TANG Hui-ming, WANG Liang-qing, ZHAO Bin-bin, WU Yi-ping, XIONG Cheng-ren. Anisotropy, scale and interval effects of natural rock discontinuity surface roughness[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 170-179. DOI: 10.11779/CJGE201601019
Citation: GE Yun-feng, TANG Hui-ming, WANG Liang-qing, ZHAO Bin-bin, WU Yi-ping, XIONG Cheng-ren. Anisotropy, scale and interval effects of natural rock discontinuity surface roughness[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 170-179. DOI: 10.11779/CJGE201601019

Anisotropy, scale and interval effects of natural rock discontinuity surface roughness

More Information
  • Received Date: March 12, 2015
  • Published Date: January 19, 2016
  • To estimate the influence factors on the natural rock discontinuity roughness, taking an in-situ large scale rock collected in Wulong County, Chongqing City as an example, the variation rules of roughness under different sampling directions, sizes and precisions are analyzed by using the 3D laser scanning technology, and Grasselli’s method is improved through discretization of rock discontinuity into a large amount of quadrangular tiny planes rather than triangular planes. The results show that the natural rock discontinuities considered herein are characterized by obvious anisotropies, positive scale effects and interval effects. Therefore, the sampling direction with respect to roughness data acquisition should be kept the same with the shearing direction (direction of rock mass movement) in the procedure of roughness evaluation. In addition, the sampling size is specified to be equal to or larger than the effective sampling size, while the sampling interval should be equal to or less than the effective sampling interval. For the convenient comparison among the assessed results by different methods, this kind of study should be performed under the same sampling parameters including sampling directions, sizes and intervals.
  • [1]
    AMERICAN, BARTON N. Review of a new shear - strength criterion for rock joints[J]. Engineering Geology, 1973, 7(4): 287-332.
    [2]
    WU T H, ALI E M. Statistical representation of joint roughness[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1978, 15(5): 259-262.
    [3]
    TSE R, CRUDEN D M. Estimating joint roughness coefficients[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1979, 16(2): 303-307.
    [4]
    MAERZ N H, FRANKLIN J A, BENNETT C P. Joint roughness measurement using shadow profilometry[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1990, 27(5): 329-343.
    [5]
    BELEM T, ETIENNE F H, SOULEY M. Quantitative parameters for rock joint surface roughness[J]. Rock Mechanics and Rock Engineering, 2000, 33(4): 217-242.
    [6]
    CLARK K C. Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method [J]. Computers and Geoscience, 1986(12): 713-722.
    [7]
    TURK N, GREIG M J, DEARMAN W R, et al. Characterization of rock joint surfaces by fractal dimension [C]// The 28th US Symposium on Rock Mechanics (USRMS). Rotterdam: A. A. Balkema, 1987.
    [8]
    ODLING N E. Natural fracture profiles, fractal dimension and joint roughness coefficients[J]. Rock Mechanics and Rock Engineering, 1994(27): 135-153.
    [9]
    XIE H P, WANG J A, STEIN E. Direct fractal measurement and multifractal properties of fracture surface[J]. Physics Letters A, 1998, A242: 41-50.
    [10]
    KULATILAKE P H S W, BALASINGAM P, PARK J, et al. Natural rock joint roughness quantification through fractal techniques[J]. Geotechnical and Geological Engineering, 2006, 24(5): 1181-1202.
    [11]
    BABANOURI N, KARIMI NS, SARAFRAZI S. A hybrid particle swarm optimization and multi-layer perceptron algorithm for bivariate fractal analysis of rock fractures roughness[J]. International Journal of Rock Mechanics and Mining Sciences, 2013(60): 66-74.
    [12]
    GRASSELLI G. Shear strength of rock joints based on quantified surface description[D]. Lausanne: Swiss Federal Institute of Technology, 2001.
    [13]
    葛云峰, 唐辉明, 黄 磊, 等. 岩体结构面三维粗糙度系数表征新方法[J]. 岩石力学与工程学报, 2012, 31(12): 2508-2517. (GE Yun-feng, TANG Hui-ming, HUANG Lei, et al. A new representation method for three-dimensional joint roughness coefficient of rock joint[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2508-2517. (in Chinese))
    [14]
    PARK J W, SONG J J. Numerical method for the determination of contact areas of a rock joint under normal and shear loads[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 58: 8-22.
    [15]
    JIANG Y J, LI B, TANABASHI Y. Estimating the relation between surface roughness and mechanical properties of rock joints[J]. International Journal of Rock Mechanics & Mining Sciences, 2006, 43(6): 837-846.
    [16]
    TATONE B S A, GRASSELLI G. An investigation of discontinuity roughness scale dependency using high-resolution surface measurements[J]. Rock Mechanics and Rock Engineering, 2013, 46: 657-681.
    [17]
    夏才初. 岩石结构面的表面形态特征研究[J]. 工程地质学报, 1996, 4(3): 71-78. (XIA Cai-chu. A study on the surface morphological feathers of rock structural faces[J]. Journal of Engineering Geology, 1996, 4(3): 71-78. (in Chinese))
    [18]
    杜时贵, 陈 禹, 樊良本. JRC修正直边法的数学表达[J]. 工程地质学报, 1996, 4(2): 36-43. (DU Shi-gui, CHEN Yu, FAN Liang-ben. Mathematical expression of JRC modified straight edge[J]. Journal of Engineering Geology, 1996, 4(2): 36-43. (in Chinese))
    [19]
    FARDIN N. Influence of structural non-stationarity of surface roughness on morphological characterization and mechanical deformation of rock joint[J]. Rock Mechanics Rock Engineering, 2008, 41(2): 267-297.
    [20]
    CRAVERO M, IABICHINO G, FERRERO A M. Evaluation of joint roughness and dilatancy of schistosity joints[C]// Rock Mechanics-a Challenge for Society: Processing of Eurock 2011. Rotterdam: A A Balkema, , 2001: 217-222.
    [21]
    SWAN J, ZONGQI S. Prediction of shear behavior of joints using profiles[J]. Rock Mechanics Rock Engineering, 1985, 18(3): 183-212.
    [22]
    KUTTER H K, OTTO F. Influence of parallel and cross-joints on shear behavior of rock discontinuities[C]// Rock Joints. Rotterdam: A A Balkema, 1990: 243-250.
    [23]
    GIANI G P, FERRERO A M, PASSARELLO G, et al. Scale effect evaluation on natural discontinuity shear strength[C]// Processing of the Conference on Fractured and Jointed Rock Masses. Rotterdam: A A Balkema, 1992: 447-452.
    [24]
    HENCHER S R, TOY J P, LUMSDEN A C. Scale-dependent shear strength of rock joints[C]// Scale Effects in Rock Masses 93; Processing of the 2nd International Workshop on Scale Effects in Rock Masses. Rotterdam: A A Balkema, 1993: 233-240.
    [25]
    OHNISHI Y, YOSHINAKA R. Laboratory investigation of scale effect in mechanical behavior of rock[C]// Processing of the Conference on Fractured and Jointed Rock Masses. Rotterdam: A A Balkema, 1992: 465-477.
    [26]
    TANG H M, GE Y F, WANG L Q, et al. Study on estimation method of rock mass discontinuity shear strength based on three-dimensional laser scanning and image technique[J]. Journal of Earth Science, 2012, 23(6): 908-913.
    [27]
    GE Y F, KULATILAKE P H S W, TANG H M, et al. Investigation of natural rock joint roughness[J]. Computers and Geotechnics, 2014, 55: 290-305.
    [28]
    葛云峰. 基于BAP的岩体结构面粗糙度与峰值抗剪强度研究[D]. 武汉: 中国地质大学, 2014. (GE Yun-feng. Research on roughness and peak shear strength for rock discontinuities based on BAP[D]. Wuhan: China University of Geosciences, 2014. (in Chinese))
    [29]
    俞 缙, 赵晓豹, 赵维炳, 等. 改进的岩石节理弹性非线性法向变形本构模型研究[J]. 岩土工程学报, 2008, 30(9): 1316-1321. (YU Jin, ZHAO Xiao-bao, ZHAO Wei-bing, et al. Improved nonlinear elastic constitutive model for normal deformation of rock fractures[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1316-1321. (in Chinese))
    [30]
    唐志成, 刘泉声, 刘小燕. 节理的剪切力学性质与含三维形貌参数的剪切强度准则比较研究[J]. 岩土工程学报, 2014, 36(5): 873-879. (TANG Zhi-cheng, LIU Quan-sheng, LIU Xiao-yan. Shear behavior of rock joints and comparative study on shear strength criteria with three-dimensional morphology parameters[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 873-879. (in Chinese))
  • Related Articles

    [1]GONG Geng, LI Shenglian, ZHANG Guohua, XIONG Feng, TANG Zhicheng. Numerical experiments on scale effects of contact characteristics of rock joints[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1481-1490. DOI: 10.11779/CJGE20230673
    [2]WU Shuaifeng, SUN Miaojun, MA Zhigang, WEI Ran, ZHANG Liya. Model tests on size effects of dam rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 11-15. DOI: 10.11779/CJGE2023S10053
    [3]CHEN Rong, FU Sheng-nan, HAO Dong-xue, SHI Dan-da. Scale effects of uplift capacity of circular anchors in dense sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 78-85. DOI: 10.11779/CJGE201901008
    [4]SHAO Xiao-quan, CHI Shi-chun, TAO Yong. Numerical simulation of size effect on shear strength and deformation behavior of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1766-1772. DOI: 10.11779/CJGE201810002
    [5]XU Du, FENG Xia-ting, LI Shao-jun, WU Shi-yong, QIU Shi-li, ZHOU Yang-yi, GAO Yao-hui. In-situ testing technique for tunnel deformation and structural plane of rock mass based on contactless laser scanning method and its application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1336-1343. DOI: 10.11779/CJGE201807022
    [6]KONG Xian-jing, LIU Jing-mao, ZOU De-gao. Scale effect of rockfill and multiple-scale triaxial test platform[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1941-1947. DOI: 10.11779/CJGE201611002
    [7]KONG Ling-ming, YAO Yang-ping. K0-anisotropic UH model considering time effects[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 812-820. DOI: 10.11779/CJGE201505006
    [8]WANG Ju, ZHANG Cheng-cai. Deformation monitoring of earth-rock dams based on three-dimensional laser scanning technology[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2345-2350. DOI: 10.11779/CJGE201412026
    [9]CHEN Zhi-fu, CHEN De-li, YANG Jian-xue. Application of three-dimensional laser scanning technique in deformation monitoring of excavations[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 557-559.
    [10]Z HANG lei, GAO Guang-yun. Size effect of large-diameter belled piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 83-87.
  • Cited by

    Periodical cited type(6)

    1. 许盛,杨明山,唐志勇,杨皓宇,李小兴,刘念. 察尔汗盐湖地区饱和盐渍软土地基处理. 人民长江. 2024(S2): 178-184 .
    2. 何鸿烈,杨扬,王志壮,司宁强,李生泽. 戈壁料高填方强夯补强应用研究. 建筑施工. 2023(03): 534-537 .
    3. 张学军. 强夯压实技术在路基补强施工的应用及优化. 建筑机械. 2023(07): 61-66+70 .
    4. 赵延林,龚雨林,张子煜. 深厚换填砂土地基强夯有效加固深度的影响因素. 黑龙江科技大学学报. 2023(05): 710-717 .
    5. 刘文俊,李岳,蔡靖,戴轩,水伟厚,董炳寅. 基于强夯应力波传播模型的夯击参数研究. 岩土力学. 2023(S1): 427-435 .
    6. 秦劭杰,戎晓宁,张路银,彭梦凯,董炳寅. 特殊场地强夯振动监测及隔振效果研究. 地基处理. 2023(S2): 84-90 .

    Other cited types(7)

Catalog

    Article views (567) PDF downloads (648) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return