• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

局部锚杆失效对桩锚基坑支护体系的影响及其机理研究

郑刚, 雷亚伟, 程雪松, 李溪源, 王若展

郑刚, 雷亚伟, 程雪松, 李溪源, 王若展. 局部锚杆失效对桩锚基坑支护体系的影响及其机理研究[J]. 岩土工程学报, 2020, 42(3): 421-429. DOI: 10.11779/CJGE202003003
引用本文: 郑刚, 雷亚伟, 程雪松, 李溪源, 王若展. 局部锚杆失效对桩锚基坑支护体系的影响及其机理研究[J]. 岩土工程学报, 2020, 42(3): 421-429. DOI: 10.11779/CJGE202003003
ZHENG Gang, LEI Ya-wei, CHENG Xue-song, LI Xi-yuan, WANG Ruo-zhan. Influences and mechanisms of anchor failure on anchored pile retaining system of deep excavations[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 421-429. DOI: 10.11779/CJGE202003003
Citation: ZHENG Gang, LEI Ya-wei, CHENG Xue-song, LI Xi-yuan, WANG Ruo-zhan. Influences and mechanisms of anchor failure on anchored pile retaining system of deep excavations[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 421-429. DOI: 10.11779/CJGE202003003

局部锚杆失效对桩锚基坑支护体系的影响及其机理研究  English Version

基金项目: 

国家重点研发计划项目 2016YFC0802008

天津市自然科学基金项目 18JCQNJC07900

详细信息
    作者简介:

    郑刚(1967— ),男,博士,教授,博士生导师,从事土力学及岩土工程教学与科研工作。E-mail:zhenggang1967@163.com

    通讯作者:

    程雪松, E-mail:cheng_xuesong@163.com

  • 中图分类号: TU473

Influences and mechanisms of anchor failure on anchored pile retaining system of deep excavations

  • 摘要: 桩锚支护基坑中由锚杆失效引起的坍塌事故屡见不鲜。针对此问题,采用有限差分法研究了局部锚杆失效引发的土压力和支护结构内力变化等荷载传递规律,并利用大型模型试验加以定性验证。锚杆失效会导致邻近3~4根锚杆轴力显著增大,导致冠梁最大剪力和弯矩增加,冠梁按照构造配筋很容易发生破坏。随着锚杆失效数量的增加,锚杆最大荷载(轴力)传递系数逐渐增大并趋于定值,破坏范围内支护桩桩身变形和受力模式逐渐由支撑式向悬臂式过渡,最大弯矩先减小后增至定值,此时其荷载(弯矩)传递系数普遍大于锚杆。可见,锚杆失效较少时,破坏沿锚杆传递,失效较多时,破坏发展至支护桩。此外,开挖深度越大,土体强度越低,支护桩及锚杆荷载传递系数越高。
    Abstract: Collapse accidents of excavations caused by anchor failure are common in anchored pile retaining excavations. Aiming at the problem, the finite difference method (FDM) is adopted to study the rules of load transfer, such as the earth pressure and the internal force of retaining structures of local anchor failure, and the corresponding model tests are designed. Failure of anchors will lead to obvious increase of axial force of adjacent 3~4 anchors, increase of the maximum shear force and bending moment of capping beams, and easy damage of capping beams according to structural reinforcement. As the number of failed anchors increases, the maximum load transfer coefficient (It) increases gradually and tends to be a constant value, and the deformation and stress mode of piles gradually transform from braced type to cantilever one. The maximum bending moment first decreases, then increases to a constant value. Meanwhile, Im is generally larger than It. When the number of failed anchors is less, the failure will transmit along the anchor. When the number of failed anchors is more, the failure will develop to the pile. In addition, the larger the excavation depth, the lower the soil strength, and the higher the load transfer coefficient (Im and It).
  • 图  1   有限差分网格及模型

    Figure  1.   FDM mesh and information of excavation model

    图  2   1根锚杆失效后5 m 深处桩后土压力变化曲线

    Figure  2.   Change curves of earth pressure acting on pile at a depth of 5 m after failure of 1 anchor

    图  3   不同数量锚杆破坏时1号桩主、被动区土压力

    Figure  3.   Earth pressures of pile No. 1 for different numbers of failed anchors

    图  4   锚杆破坏时未失效锚杆轴力变化

    Figure  4.   Axial forces of intact anchors under failure partial anchors

    图  5   不同数量锚杆破坏前后冠梁内力变化

    Figure  5.   Internal forces of capping beams for different numbers of failed anchors

    图  6   1根锚杆失效情况下支护桩内力变化

    Figure  6.   Internal forces of piles after failure of 1 anchor

    图  7   不同数量锚杆破坏时#1桩桩身变形及弯矩变化

    Figure  7.   Deflections and bending moments of pile No. 1 for different numbers of failed anchors

    图  8   支护桩隔离体受力分析图

    Figure  8.   Force analysis diagram of isolation body of piles

    图  9   4根锚杆失效情况下支护桩弯矩变化

    Figure  9.   Bending moments of piles after failure of 4 anchors

    图  10   不同局部破坏范围情况下荷载传递系数(弯矩和轴力)

    Figure  10.   Values of Im and It under different failure scopes of anchors

    图  11   不同开挖深度下锚杆破坏前后1号桩净土压力和弯矩

    Figure  11.   Net earth pressures acting on pile No. 1 and bending moments of pile No. 1 under different excavation depths

    图  12   不同开挖深度荷载(弯矩和轴力)传递系数

    Figure  12.   Values of Im and It under different excavation depths

    图  13   不同土体强度下桩和锚杆的荷载传递系数

    Figure  13.   Values of Im and It under different soil strengths

    图  14   大型模型试验装置及基坑模型示意

    Figure  14.   Platform of large-scale model tests and excavation model

    图  15   不同开挖深度下荷载(轴力)传递系数对比

    Figure  15.   Comparison of load transfer coefficient (It) in tests 1-2

    图  16   工况1中桩P19桩身弯矩随锚杆破坏的变化曲线

    Figure  16.   Moment curves of pile P19 under different failures of anchors

  • [1] 程良奎, 张培文. 岩土锚固工程的若干力学概念问题[J]. 岩石力学与工程学报, 2015, 34(4): 668-682. doi: 10.13722/j.cnki.jrme.2015.04.003

    CHENG Liang-kui, ZHANG Pei-wen. Several mechanical conceptions for anchored structures in rock and soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 668-682. (in Chinese) doi: 10.13722/j.cnki.jrme.2015.04.003

    [2]

    HAACK A. Construction of the north-south-metro line in cologne and the accident on March 3rd, 2009[C]//International Symposium on Social Management Systems (SSMS), 2009, Cologne.

    [3]

    ITOH K, KIKKAWA N, TOYOSAWA Y, et al. Failure mechanism of anchored retaining wall due to the anchor head itself being broken[C]//International Symposium on Backward Problems in geotechnical Engineering, 2011, Osaka: 13-18.

    [4] 曾宪明, 易平, 刘春华. 基坑与边坡工程事故原因统计分析[C]//工程安全及耐久性中国土木工程学会第九届年会论文集, 2000, 杭州.

    ZENG Xian-ming, YI Ping, LIU Chun-hua. Statistical analyses of deep excavation and slop engineering accident reasons[C]//The proceeding of the Ninth Annual Conference of the China Civil Engineering, 2000, Hangzhou. (in Chinese)

    [5] 吴文, 徐松林, 周劲松, 等. 深基坑桩锚支护结构受力和变形特性研究[J]. 岩石力学与工程学报, 2001, 20(3): 399-402. doi: 10.3321/j.issn:1000-6915.2001.03.027

    WU Wen, XU Song-lin, ZHOU Jin-song, et al. Studies of force and deformation properties considering pile-anchor-soil interaction in deep pits[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(3): 399-402. (in Chinese) doi: 10.3321/j.issn:1000-6915.2001.03.027

    [6] 黄雪峰, 马龙, 陈帅强, 等. 预应力锚杆内力传递分布规律与时空效应[J]. 岩土工程学报, 2014, 36(8): 1521-1525. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201408022.htm

    HUANG Xue-feng, MA Long, CHEN Shuai-qiang, et al. Distribution characteristics and time-space effects of internal force of prestressed anchor rod[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1521-1525. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201408022.htm

    [7] 丁秀丽, 盛谦, 韩军, 等. 预应力锚索锚固机理的数值模拟试验研究[J]. 岩石力学与工程学报, 2002, 21(7): 980-988. doi: 10.3321/j.issn:1000-6915.2002.07.009

    DING Xiu-li, SHENG Qian, HAN Jun, et al. Numerical simulation testing study on reinforcement mechanism of prestressed anchorage cable[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(7): 980-988. (in Chinese) doi: 10.3321/j.issn:1000-6915.2002.07.009

    [8]

    SHU J C, ZHANG D W. A case study: observed deformation characteristics and internal force of pile anchor retaining excavation[J]. Geotechnical Frontiers, 2017(278): 136-145.

    [9] 王曙光. 深基坑支护事故处理经验录[M]. 北京: 机械工业出版社, 2005.

    WANG Shu-guang. Experiences of Handling Accidents of Deep Foundation Pit[M]. Beijing: China Machine Press, 2005. (in Chinese)

    [10]

    SILVA A P, FESTUGATO F, MASUERO J R. A new methodology to assess the structural safety of anchored retaining walls[J]. Thin-Walled Structures, 2017, 117: 343-355. doi: 10.1016/j.tws.2017.04.022

    [11]

    BILGIN O. Numerical studies of anchored sheet pile wall behavior constructed in cut and fill conditions[J]. Computers and Geotechnics, 2010, 37(3): 399-407. doi: 10.1016/j.compgeo.2010.01.002

    [12]

    BENZ T, SCHWAB R, VERMEER P. Small-strain stiffness in geotechnical analyses[J]. Geotechnical Engineering, 2009, 86(S1): 16-27.

    [13]

    ZHAO W, HAN J Y, CHEN Y, et al. A numerical study on the influence of anchorage failure for a deep excavation retained by anchored pile walls[J]. Advances in Mechanical Engineering, 2018, 10(2): 1-17.

    [14]

    CHENG X S, ZHENG G, DIAO Y, et al. Study of the progressive collapse mechanism of excavations retained by cantilever contiguous piles[J]. Engineering Failure Analysis, 2016, 71: 72-89.

    [15]

    CHENG X S, ZHENG G, DIAO Y, et al. Experimental study of the progressive collapse mechanism of excavations retained by cantilever piles[J]. Canadian Geotechnical Journal, 2017, 54: 574-587. doi: 10.1139/cgj-2016-0284

    [16] 郑刚, 程雪松, 张雁. 基坑环梁支撑结构的连续破坏模拟及冗余度研究[J]. 岩土工程学报, 2014, 36(1): 105-117. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401013.htm

    ZHENG Gang, CHENG Xue-song, ZHANG Yan. Progressive collapse simulation and redundancy study of ring-beam supporting structures of excavations[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 105-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401013.htm

    [17] 郑刚, 雷亚伟, 程雪松, 等. 局部破坏对钢支撑排桩基坑支护体系影响的试验研究[J]. 岩土工程学报, 2019, 41(8): 1390-1399. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908003.htm

    ZHENG Gang, LEI Ya-wei, CHENG Xue-song, et al. Experimental study of the influence of local failure on steel strutted pile retaining system of deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1390-1399. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908003.htm

  • 期刊类型引用(26)

    1. 郝增明,闫楠,白晓宇,张立,张启军,林西伟. 杂填土地层深基坑微型桩-锚-撑组合支护体系受力特性原位试验. 中南大学学报(自然科学版). 2024(02): 755-773 . 百度学术
    2. 程雪松,张润泽,郑刚,王若展,张勇,涂杰,马运康. 局部超挖或超载作用下桩锚支护基坑连续垮塌试验研究. 岩土工程学报. 2024(10): 2078-2088 . 本站查看
    3. 胡建伟. 某基坑加深开挖支护体系加固结构数值模拟分析. 土工基础. 2024(06): 931-937 . 百度学术
    4. 熊思远. 周边地面塌陷对某桩锚支护基坑受力性能影响分析. 四川建筑. 2024(06): 138-141 . 百度学术
    5. 蔡连利. 堆载对明挖隧道基坑围护结构的影响. 路基工程. 2023(01): 228-233 . 百度学术
    6. 李浩,李春艳,张嵩,谢英美. 建筑工程中地质特征及岩土工程支护研究. 能源与环保. 2023(01): 181-186 . 百度学术
    7. 郑刚,王若展,程雪松,雷亚伟,李溪源,周强. 多道锚杆基坑局部锚杆失效引发连续破坏的机理与控制. 岩土工程学报. 2023(03): 468-477 . 本站查看
    8. 张立,白晓宇,孙林娜,张鹏飞,闫楠. 深基坑开挖过程中多阶微型钢管桩受力性状试验研究. 工程勘察. 2023(10): 7-11+21 . 百度学术
    9. 安国阳,龚治,李平山,田苑. 建筑基坑桩锚支护绿色施工技术分析. 安徽建筑. 2023(11): 71-72+92 . 百度学术
    10. 王维宇. 基坑降水对滨海软土地区基坑施工的影响分析. 铁道建筑技术. 2022(01): 134-138 . 百度学术
    11. 董建军,谢郑权,杨嫡,郑高阳. 锚杆锚固段拉脱失效对基坑安全稳定性的影响研究. 安全与环境学报. 2022(01): 97-102 . 百度学术
    12. 程鹏. 某住宅楼地下室工程的支护桩+土拱面板支护施工. 中国住宅设施. 2022(02): 133-135 . 百度学术
    13. 文选跃. 岩土工程测量中基坑支护结构荷载度量方法. 能源与环保. 2022(04): 287-292 . 百度学术
    14. 吕松梅,夏敏,任光明,范荣全,梁永闪. 富水砂卵石层地区桩锚支护深基坑变形特性. 成都理工大学学报(自然科学版). 2022(03): 347-357 . 百度学术
    15. 郑刚,程雪松,周海祚,张天奇,于晓旋,刁钰,王若展,衣凡,张文彬,郭伟. 岩土与地下工程结构韧性评价与控制. 土木工程学报. 2022(07): 1-38 . 百度学术
    16. 谢晟,韦巡洲. 桩撑与桩锚联合支护体系在复杂地层深基坑的应用. 土木工程与管理学报. 2022(05): 63-69 . 百度学术
    17. 邱茂顺,秦宝军. 基于城际铁路的基坑施工维护结构边缘加工技术. 建筑机械. 2022(11): 83-87 . 百度学术
    18. 种记鑫,魏焕卫,王钦山,武韬,王介鲲,郑晓. 内支撑局部失效对基坑支护体系影响的试验研究. 科学技术与工程. 2022(36): 16168-16179 . 百度学术
    19. 王智然. 软黏土桩撑锚组合支护深基坑变形性状实测分析. 辽宁省交通高等专科学校学报. 2022(06): 25-30 . 百度学术
    20. 安辰亮,冯卫星,王道远,袁金秀. 车站异形深大基坑施工过程试验研究. 铁道工程学报. 2021(01): 13-18 . 百度学术
    21. 郑刚,朱晓蔚,程雪松,雷亚伟,王若展,赵璟璋,衣凡. 悬臂排桩支护基坑连续破坏控制理论及设计方法研究. 岩土工程学报. 2021(06): 981-990 . 本站查看
    22. 郑刚,赵璟璋,程雪松,俞丹瑶,王若展,朱晓蔚,衣凡. 多道撑深基坑支撑竖向连续破坏机理及控制研究. 天津大学学报(自然科学与工程技术版). 2021(10): 1025-1038 . 百度学术
    23. 刘天宝,李欣. 黄土地区深基坑桩锚支护结构变形的影响分析. 建筑结构. 2021(S1): 2012-2017 . 百度学术
    24. 郑刚,衣凡,黄天明,程雪松,俞丹瑶,雷亚伟,王若展. 超挖引起双排桩支护基坑倾覆型连续破坏机理研究. 岩土工程学报. 2021(08): 1373-1381 . 本站查看
    25. 周建雄,周洪涛. 深厚砂层场地基坑锚索失效的处理措施研究. 广东土木与建筑. 2020(12): 71-73+77 . 百度学术
    26. 陈用伟,罗仕恒. 双排桩支护结构在直立高边坡中的应用. 广东土木与建筑. 2020(12): 25-28 . 百度学术

    其他类型引用(36)

图(16)
计量
  • 文章访问数:  479
  • HTML全文浏览量:  32
  • PDF下载量:  357
  • 被引次数: 62
出版历程
  • 收稿日期:  2019-06-19
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-02-29

目录

    /

    返回文章
    返回