• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

多道锚杆基坑局部锚杆失效引发连续破坏的机理与控制

郑刚, 王若展, 程雪松, 雷亚伟, 李溪源, 周强

郑刚, 王若展, 程雪松, 雷亚伟, 李溪源, 周强. 多道锚杆基坑局部锚杆失效引发连续破坏的机理与控制[J]. 岩土工程学报, 2023, 45(3): 468-477. DOI: 10.11779/CJGE20211543
引用本文: 郑刚, 王若展, 程雪松, 雷亚伟, 李溪源, 周强. 多道锚杆基坑局部锚杆失效引发连续破坏的机理与控制[J]. 岩土工程学报, 2023, 45(3): 468-477. DOI: 10.11779/CJGE20211543
ZHENG Gang, WANG Ruo-zhan, CHENG Xue-song, LEI Ya-Wei, LI Xi-Yuan, ZHOU Qiang. Mechanism and control of progressive collapse caused by failure of local anchors in multiple-level anchored pile excavation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 468-477. DOI: 10.11779/CJGE20211543
Citation: ZHENG Gang, WANG Ruo-zhan, CHENG Xue-song, LEI Ya-Wei, LI Xi-Yuan, ZHOU Qiang. Mechanism and control of progressive collapse caused by failure of local anchors in multiple-level anchored pile excavation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 468-477. DOI: 10.11779/CJGE20211543

多道锚杆基坑局部锚杆失效引发连续破坏的机理与控制  English Version

基金项目: 

国家自然科学基金项目 52178343

天津市科技计划项目 19YFZCSN01160

详细信息
    作者简介:

    郑刚(1967—),男,博士,教授,博士生导师,主要从事岩土工程教学与科研方面的工作。E-mail: zhenggang1967@163.com

    通讯作者:

    程雪松, E-mail: cheng_xuesong@163.com

  • 中图分类号: TU473

Mechanism and control of progressive collapse caused by failure of local anchors in multiple-level anchored pile excavation

  • 摘要: 多道锚杆支护体系具有节约施工空间、变形控制效果好等优点,广泛应用于深基坑支护中。然而局部锚杆失效引发的基坑连续破坏事故时有发生。针对此问题,采用有限差分法研究了多道锚杆支护体系中局部锚杆失效引发的土压力与支护结构内力变化及结构连续失效规律,初步揭示了局部锚杆失效后的荷载传递路径及其引发基坑连续破坏的机理。多道锚杆支护体系中,首道锚杆局部失效对邻近未失效锚杆影响大,但会引起支护桩弯矩下降,最下道锚杆局部失效则相反,但仅一道锚杆局部失效影响相对较小,均小于基坑深度相同的单道锚杆支护体系,然而多道锚杆整列同时局部失效影响显著大于单道锚杆支护体系,更易引发连续破坏,因此应采用隔道加强等设计或施工措施将局部锚杆失效控制在一道内。局部若干根锚杆失效导致邻近受影响最大的锚杆依次失效时,锚杆失效数量较多后,初始锚杆失效位置对连续破坏发展传递路径不再产生影响,锚杆连续破坏接近于整列失效,且呈倒梯形水平向扩展。多道锚杆支护体系中发生整列锚杆失效时,冠梁或腰梁极易发生破坏,造成支护桩弯曲破坏,加快基坑连续垮塌过程,因此应对冠(腰)梁进行局部锚杆失效工况下的设计,以提高基坑防连续破坏整体安全性能。
    Abstract: Collapse of tied-back excavations occurs frequently. In this study, the finite difference method is used to simulate failure of anchors. In a multi-level anchored pile excavation, the failure of the first-level anchors has a great impact on the adjacent anchors and causes the bending moments of piles to decrease, while the failure of the lowest-level anchors has the opposite effects. The impact of failure of column anchors in a multi-level anchored-pile system is significantly greater than that of a single-level anchored-pile system, which easily leads to progressive collapse. Therefore, the construction or design methods, such as interval-level anchor strengthening, should be adopted to limit the failure at a certain level. When the failure of anchors causes the most affected adjacent anchors to fail progressively and even many anchors to fail, the failure position of the initial anchors does not affect the transmission path development of failure of anchors. Accordingly, the progressive failure of anchors is close to the failure of column anchors, and shows an inverted trapezoidal horizontal expansion. The failure of column anchors in a multi-level anchored pile system easily leads to damage to the beam. Then it will cause pile failure and accelerate the process of excavation collapse. Therefore, the capping (waler) beams should be designed under the failure of column anchors to improve the overall safety performance of the retaining system.
  • 图  1   有限差分网格及模型

    Figure  1.   FDM meshes and model for excavation

    图  2   支护结构布置及锚杆失效工况

    Figure  2.   Retaining structures and failure conditions of anchors

    图  3   锚杆失效引起的#1桩桩身变形

    Figure  3.   Deflection of pile No. 1 induced by failure of anchors

    图  4   锚杆失效时荷载(锚杆轴力)传递系数变化

    Figure  4.   Load transfer coefficients (axial forces) under failure conditions 1~3 of anchors

    图  5   工况1,2,3锚杆失效时作用在#1桩上土压力与弯矩变化

    Figure  5.   Earth pressures and bending moments on pile No. 1 under failure conditions 1~3 of anchors

    图  6   锚杆失效时支护桩荷载(弯矩)传递系数

    Figure  6.   Load transfer coefficients (bending moments) of piles under failure conditions 1~3 of anchors

    图  7   不同数量锚杆失效引起冠梁和腰梁弯矩变化

    Figure  7.   Bending moments on capping and waler beams under failure of different amounts of anchors

    图  8   考虑冠梁及腰梁破坏时支护桩弯矩变化

    Figure  8.   Bending moments on piles considering failure of capping and waler beams

    图  9   不同数量锚杆失效引起冠梁和腰梁剪力变化

    Figure  9.   Shear forces on capping and waler beams under failure of different amounts of anchors

    图  10   支护结构布置及锚杆失效工况

    Figure  10.   Retaining structures and failure of anchors

    图  11   锚杆失效时荷载(轴力)传递系数

    Figure  11.   Load transfer coefficients (axial forces) under failure conditions 4~5 of anchors

    图  12   锚杆失效顺序及荷载(轴力)传递系数

    Figure  12.   Failure sequence of anchors and load transfer coefficients (axial forces) under failure conditions of 6~8

    图  13   锚杆失效过程中荷载(弯矩)传递系数

    Figure  13.   Load transfer coefficients (bending moments) of piles under failure conditions 4~5 of anchors

    图  14   工况6,7,8锚杆失效时作用在#1桩上土压力与弯矩变化

    Figure  14.   Earth pressures and bending moments on pile No. 1 under failure conditions 6~8 of anchors

    图  15   锚杆失效时支护桩荷载(弯矩)传递系数

    Figure  15.   Load transfer coefficients (bending moments) of piles under failure conditions 6~8 of anchors

    图  16   不同锚杆布置时荷载传递路径

    Figure  16.   Load transfer paths with different layouts of anchors

  • [1]

    OU C Y. Deep Excavation: Theory and Practice[M]. London: Taylor & Francis/Balkema, 2006.

    [2]

    HSU S T. Behavior of pressure-grouted anchors in gravel[J]. Canadian Geotechnical Journal, 2012, 49(6): 719-728. doi: 10.1139/t2012-032

    [3]

    ITOH K, KIKKAWA N, TOYOSAWA Y, et al. Failure mechanism of anchored retaining wall due to the breakage of anchor head[M]// Developments in Geotechnical Engineering. New Delhi: Springer India, 2015: 175-186.

    [4]

    ÖSER C, SAYIN B. Geotechnical assessment and rehabilitation of retaining structures collapsed partially due to environmental effects[J]. Engineering Failure Analysis, 2021, 119: 104998. doi: 10.1016/j.engfailanal.2020.104998

    [5]

    BILGIN Ö. Numerical studies of anchored sheet pile wall behavior constructed in cut and fill conditions[J]. Computers and Geotechnics, 2010, 37(3): 399-407. doi: 10.1016/j.compgeo.2010.01.002

    [6] 黄雪峰, 马龙, 陈帅强, 等. 预应力锚杆内力传递分布规律与时空效应[J]. 岩土工程学报, 2014, 36(8): 1521-1525. doi: 10.11779/CJGE201408019

    HUANG Xuefeng, MA Long, CHEN Shuaiqiang, et al. Distribution characteristics and time-space effects of internal force of prestressed anchor rod[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1521-1525. (in Chinese) doi: 10.11779/CJGE201408019

    [7]

    SHU J C, ZHANG D W. A case study: observed deformation characteristics and internal force of pile-anchor retaining excavation[C]// Geotechnical Frontiers 2017. Reston, VA, USA: American Society of Civil Engineers, 2017: 136-148.

    [8]

    WEERASINGHE R B, LITTLEJOHN G S. Uplift capacity of shallow anchorages in weak mudstone[J]. Thomas Telford, 1997, 3: 23-33.

    [9]

    LITTLEJOHN G S. Ground anchorages: corrosion performance[J]. Proceedings of the Institution of Civil Engineers, 1987, 82(3): 645-662. doi: 10.1680/iicep.1987.328

    [10]

    STILLE H, BROMS, B. B. Load redistribution caused by anchor failures in sheet pile walls[C]// Proceedings of the 6th European Conference on Soil Mechanics and Foundation Engineering, Vienna, 1976: 197-200.

    [11]

    ANDERSON PECCIN D S, LUCAS F, JOAO RICARDO M. A new methodology to assess the structural safety of anchored retaining walls[J]. Thin-Walled Structures, 2017, 117: 343-355. doi: 10.1016/j.tws.2017.04.022

    [12]

    ZHAO W, HAN J Y, CHEN Y, et al. A numerical study on the influence of anchorage failure for a deep excavation retained by anchored pile walls[J]. Advances in Mechanical Engineering, 2018, 10(2): 168781401875677. doi: 10.1177/1687814018756775

    [13] 郑刚, 雷亚伟, 程雪松, 等. 局部锚杆失效对桩锚基坑支护体系的影响及其机理研究[J]. 岩土工程学报, 2020, 42(3): 421-429. doi: 10.11779/CJGE202003003

    ZHENG Gang, LEI Yawei, CHENG Xuesong, et al. Influences and mechanisms of anchor failure on anchored pile retaining system of deep excavations[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 421-429. (in Chinese) doi: 10.11779/CJGE202003003

    [14] 土木智库. 南宁深基坑坍塌事故原因初步确定, 设计图纸公布![EB/OL]. [2019-06-12) https://baijiahao.baidu.com/s?id=1636099866858085864&wfr=spider&for=pc.

    Civil Engineering Think Tank. The Cause of the Collapse of A Deep Excavation in Nanning Has Been Initially Determined, and the Design Drawings Have Been Announced! [EB/OL]. (2019-06-12) https://baijiahao.baidu.com/s?id=1636099866858085864&wfr=spider&for=pc. (in Chinese)

    [15]

    CHENG X S, ZHENG G, DIAO Y, et al. Study of the progressive collapse mechanism of excavations retained by cantilever contiguous piles[J]. Engineering Failure Analysis, 2017, 71: 72-89. doi: 10.1016/j.engfailanal.2016.06.011

    [16] 郑刚, 雷亚伟, 程雪松, 等. 局部破坏对钢支撑排桩基坑支护体系影响的试验研究[J]. 岩土工程学报, 2019, 41(8): 1390-1399. doi: 10.11779/CJGE201908002

    ZHENG Gang, LEI Yawei, CHENG Xuesong, et al. Experimental study on influences of local failure on steel-strutted pile retaining system of deep excavations[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1390-1399. (in Chinese) doi: 10.11779/CJGE201908002

    [17] 程雪松, 郑刚, 邓楚涵, 等. 基坑悬臂排桩支护局部失效引发连续破坏机理研究[J]. 岩土工程学报, 2015, 37(7): 1249-1263. doi: 10.11779/CJGE201507011

    CHENG Xuesong, ZHENG Gang, DENG Chuhan, et al. Mechanism of progressive collapse induced by partial failure of cantilever contiguous retaining piles[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1249-1263. (in Chinese) doi: 10.11779/CJGE201507011

    [18] 冯永. 光大银行基坑支护方法的比较与数值模拟[D]. 长春: 吉林大学, 2015.

    FENG Yong. The Comparision and Numericial Simulation of Foundation Pit Supporting for the Everbright Bank[D]. Changchun: Jilin University, 2015. (in Chinese)

图(16)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-24
  • 网络出版日期:  2023-03-15
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回