Retention and transport behavior of silicon micropowder in sand under periodical water level fluctuations
-
摘要: 受大型水利工程调控及季节性降水影响,江河湖沿岸地下水位呈现出周期性变化规律,水位波动是地下水回灌等工程中影响砂层中颗粒运移及沉积特性的重要因素。通过砂层迁移-沉积试验系统开展了颗粒迁移-沉积特性试验,并采用浊度-浓度关系、穿透曲线、颗粒粒径、沉积量、流出液颗粒粒径分布、孔隙水压力及细观观测等方式实现了从宏观到细观、从定性到定量分析颗粒的迁移-沉积规律。结果表明:在相同的波动幅度下,随着水位的不断升高,悬浮颗粒横向上扩散的趋势愈加显著且渗透力作用逐渐增强,颗粒更容易沉积在多孔介质表面或孔隙通道角落中;在不同波动幅度下,注入小粒径颗粒时,随着波动幅度增加流出液浓度及峰值增大,大粒径颗粒与小粒径颗粒呈现相反规律;在相同尺寸的多孔介质中,悬浮颗粒粒径越大相对浓度峰值越低,大颗粒在孔隙中更容易由于筛滤作用发生沉积,从而造成多孔介质孔隙率和渗透性降低。Abstract: Due to the regulation of large-scale water conservancy projects and the influences of seasonal precipitation, the groundwater levels along the banks of rivers and lakes undergo periodic changes. The water level fluctuation is an important factor affecting the particle migration and sedimentation characteristics in the sand layer in groundwater recharge and other projects. In this study, a self-developed sand test system is used to evaluate the migration and sedimentation characteristics of particles under water level fluctuations. The results show that for the same fluctuation range, the continuous rise in the water level causes the number of suspended particles undergoing migration in the pore channels to increase. The horizontal diffusion becomes increasingly obvious, which drives the suspended particles to roll or move in the pore channels and increases their contact with the porous media, making it easier for the suspended particles to deposit on the surfaces of the porous media or in the corners of the pore channels. For different fluctuation amplitudes, when the smaller particles are injected, the overall concentration and peak value of the effluent also increase with the increasing fluctuation amplitude. Larger and smaller particles show opposite trends.
-
-
表 1 石英砂及硅微粉物理参数
Table 1 Physical parameters of quartz sand and quartz powder
材料 粒径范围/
μm中值粒径/
μm比表面积/
(m2·kg-1)孔隙率/
%石英砂 1000~2000 1568 7.942 40 硅微粉1 6~21 14 772.329 — 硅微粉2 9~39 24 571.69 — -
[1] LI J N, ZHOU Q Z, CAMPOS L C. The application of GAC sandwich slow sand filtration to remove pharmaceutical and personal care products[J]. Science of the Total Environment, 2018, 635: 1182-1190. doi: 10.1016/j.scitotenv.2018.04.198
[2] 亢涵, 王谋薇, 藏春月, 等. 地下水源热泵回灌堵塞的研究现状与展望[J]. 地球环境学报, 2017, 8(4): 320-326. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201704004.htm KANG Han, WANG Mouwei, ZANG Chunyue, et al. Research status and prospect of recharge clogging of groundwater heat pump[J]. Journal of Earth Environment, 2017, 8(4): 320-326. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201704004.htm
[3] 潘鼎, 唐红, 刘军. 地下水源热泵回灌非饱和渗流淤堵分析[J]. 岩石力学与工程学报, 2021, 40(4): 842-850. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104017.htm PAN Ding, TANG Hong, LIU Jun. Analysis of unsaturated seepage siltation of groundwater source heat pump recharge[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 842-850. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104017.htm
[4] BAI B, XU T, NIE Q K, et al. Temperature-driven migration of heavy metal Pb2+ along with moisture movement in unsaturated soils[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119573. doi: 10.1016/j.ijheatmasstransfer.2020.119573
[5] 周志芳, 王萍, 李雅冰, 等. 一种求解承压含水层水文地质参数的新配线法[J]. 河海大学学报(自然科学版), 2019, 47(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201901002.htm ZHOU Zhifang, WANG Ping, LI Yabing, et al. A new type curve method for estimating hydrogeological parameters of confined aquifers[J]. Journal of Hohai University (Natural Sciences), 2019, 47(1): 7-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201901002.htm
[6] 王军霞. 江汉—洞庭平原流域水文模型与地下水数值模型耦合模拟研究[D]. 武汉: 中国地质大学, 2015. WANG Junxia. Study on Coupled Simulation of Watershed Hydrologic Model and Groundwater Numerial Modelin Jianghan-Dongting Plain[D]. Wuhan: China University of Geosciences, 2015. (in Chinese)
[7] BAI B, ZHOU R, CAI G Q, et al. Coupled thermo-hydro-mechanical mechanism in view of the soil particle rearrangement of granular thermodynamics[J]. Computers and Geotechnics, 2021, 137: 104272. doi: 10.1016/j.compgeo.2021.104272
[8] YANG W, FENG T T, FLURY M, et al. Effect of sulfamethazine on surface characteristics of biochar colloids and its implications for transport in porous media[J]. Environmental Pollution, 2020, 256: 113482. doi: 10.1016/j.envpol.2019.113482
[9] BEAR J. Dynamics of Fluids in Porous Media[M]. London: Courier Corporation, 2013.
[10] GUO Z, LIU X M, MA L, et al. Effects of particle morphology, pore size and surface coating of mesoporous silica on Naproxen dissolution rate enhancement[J]. Colloids and Surfaces B: Biointerfaces, 2013, 101: 228-235. doi: 10.1016/j.colsurfb.2012.06.026
[11] CERVANTES-AVILÉS P, HUANG Y X, KELLER A A. Multi-technique approach to study the stability of silver nanoparticles at predicted environmental concentrations in wastewater[J]. Water Research, 2019, 166: 115072. doi: 10.1016/j.watres.2019.115072
[12] MASSEI N, DIEPPOIS B, HANNAH D M, et al. Multi-time-scale hydroclimate dynamics of a regional watershed and links to large-scale atmospheric circulation: application to the Seine River catchment, France[J]. Journal of Hydrology, 2017, 546: 262-275. doi: 10.1016/j.jhydrol.2017.01.008
[13] MESTICOU Z, KACEM M, DUBUJET P. Influence of ionic strength and flow rate on silt particle deposition and release in saturated porous medium: experiment and modeling[J]. Transport in Porous Media, 2014, 103(1): 1-24. doi: 10.1007/s11242-014-0285-8
[14] GODINHO J R A, CHELLAPPAH K, COLLINS I, et al. Time-lapse imaging of particle invasion and deposition in porous media using in situ X-ray radiography[J]. Journal of Petroleum Science and Engineering, 2019, 177: 384-391. doi: 10.1016/j.petrol.2019.02.061
[15] 陈星欣, 白冰. 重力对饱和多孔介质中颗粒输运特性的影响[J]. 岩土工程学报, 2012, 34(9): 1661-1667. http://cge.nhri.cn/cn/article/id/14692 CHEN Xingxin, BAI Bing. Effect of gravity on transport of particles in saturated porous media[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1661-1667. (in Chinese) http://cge.nhri.cn/cn/article/id/14692
[16] 刘泉声, 崔先泽, 张程远, 等. 粒径对多孔介质中悬浮颗粒迁移-沉积特性的影响[J]. 岩土工程学报, 2014, 36(10): 1777-1783. doi: 10.11779/CJGE201410003 LIU Quansheng, CUI Xianze, ZHANG Chengyuan, et al. Effects of particle size on characteristics of transportation and deposition of suspended particles in porous media[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1777-1783. (in Chinese) doi: 10.11779/CJGE201410003
[17] 饶登宇, 白冰. 孔隙尺度下三维多孔介质扩散迂曲度的SPH计算[J]. 岩土工程学报, 2020, 42(5): 961-967. doi: 10.11779/CJGE202005019 RAO Dengyu, BAI Bing. Pore-scale SPH simulations of diffusive tortuosity in 3-D porous media[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 961-967. (in Chinese) doi: 10.11779/CJGE202005019
[18] 张鹏远, 白冰, 蒋思晨. 孔隙结构和水动力对饱和多孔介质中颗粒迁移和沉积特性的耦合影响[J]. 岩土力学, 2016, 37(5): 1307-1316. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201605013.htm ZHANG Pengyuan, BAI Bing, JIANG Sichen. Coupled effects of hydrodynamic forces and pore structure on suspended particle transport and deposition in a saturated porous medium[J]. Rock and Soil Mechanics, 2016, 37(5): 1307-1316. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201605013.htm
[19] CUI X Z, WU D Z, WANG H X, et al. Pore features and seepage characteristics of natural gap-graded sand with two size distributions[J]. Géotechnique, 2022: 1-12.
[20] CUI X Z, FAN Y, WANG H X, et al. Experimental investigation of suspended particles transport in porous medium under variable temperatures[J]. Hydrological Processes, 2019, 33(7): 1117-1126.
[21] BAI B, NIE Q K, ZHANG Y K, et al. Cotransport of heavy metals and SiO2 particles at different temperatures by seepage[J]. Journal of Hydrology, 2021, 597: 125771.
[22] AHFIR N D, HAMMADI A, ALEM A, et al. Porous media grain size distribution and hydrodynamic forces effects on transport and deposition of suspended particles[J]. Journal of Environmental Sciences, 2017, 53: 161-172.
-
期刊类型引用(41)
1. 侯瑞彬,潘逸尘,董云瑶,付宇廷,刘蒙蒙. 2023年甘肃积石山M_S6.2地震密集观测记录的区域性差异分析. 世界地震工程. 2025(02): 12-20 . 百度学术
2. 常晁瑜,乔峰,薄景山,绽蓓蕾,谷佳沛,李昊宇,田华俊. 甘肃积石山6.2级地震诱发中川乡流滑成因初探. 防灾减灾工程学报. 2025(02): 349-356 . 百度学术
3. 王兰民,许世阳,王平,王睿,车爱兰,周燕国,吴志坚,王谦,蒲小武,柴少峰,马星宇. 2023年积石山6.2级地震诱发大规模黄土液化流滑的特征与启示. 岩土工程学报. 2024(02): 235-243 . 本站查看
4. 刘港,贾俊,张戈,洪勃,董英,裴赢,薛强,高波. 甘肃积石山地震液化型泥流特征、成因及其对黄河上游盆地地震次生灾害风险评估的启示. 西北地质. 2024(02): 220-229 . 百度学术
5. 王睿,王兰民,周燕国,王刚. 土动力学与岩土地震工程. 土木工程学报. 2024(07): 71-89+105 . 百度学术
6. 潘建磊,梁庆国,刘海生,时伟,王丽丽. 黄土液化作用及其次生灾害风险评估方法初探——以积石山M_S6.2地震为例. 地震工程学报. 2024(04): 836-845 . 百度学术
7. 袁近远,崔家伟,李兆焱,袁晓铭,张钰洋. 中国模式下砾性土液化指数评价新方法. 土木工程学报. 2024(09): 98-108 . 百度学术
8. 葛一荀,张洁,黄宏伟. 基于贝叶斯分层模型的液化侧移稳健的易损性分析方法. 同济大学学报(自然科学版). 2024(11): 1658-1669 . 百度学术
9. 钱法桥,邓亚虹,刘凡,门欢. 黄土地震滑坡研究综述与展望. 中国地质灾害与防治学报. 2024(05): 5-20 . 百度学术
10. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 . 百度学术
11. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 . 百度学术
12. 代言,邓龙胜,毛伟,范文,李培. 马兰黄土液化特性及孔压模型参数研究. 地震工程学报. 2023(02): 338-345+361 . 百度学术
13. 隆然,刘兴东. 基于致灾机理分析的公路滑坡稳定性评价及治理方案研究. 铁道勘察. 2023(02): 33-37 . 百度学术
14. 贾科敏,许成顺,杜修力,张小玲,宋佳,苏卓林. 可液化倾斜场地的侧向扩展机制分析. 岩土力学. 2023(06): 1837-1848 . 百度学术
15. 罗增文,苏卓林,贾科敏,许成顺. 地震作用下碎石桩场地侧向位移规律研究. 震灾防御技术. 2023(02): 361-368 . 百度学术
16. 王兰民,柴少峰,薄景山,王平,许世阳,李孝波,蒲小武. 黄土地震滑坡的触发类型、特征与成灾机制. 岩土工程学报. 2023(08): 1543-1554 . 本站查看
17. 李孝波,欧阳刚垒,宋霖君,吴义文,徐建元. 黄土高原地区场地设计反应谱特征周期研究. 地震工程学报. 2023(05): 1161-1170 . 百度学术
18. 柴少峰,王兰民,王平,郭海涛,夏晓雨,车高凤,王会娟. 石碑塬低角度黄土地层液化滑移特征与机理振动台试验研究. 岩土工程学报. 2023(12): 2565-2574 . 本站查看
19. 马为功,王兰民,许世阳,李登科,柴少峰. 饱和黄土隧道围岩地震液化特征的振动台试验研究. 岩土工程学报. 2023(S2): 171-176 . 本站查看
20. 李泊良,张帆宇. 降雨和地震条件下浅层黄土滑坡三维稳定性评价. 工程科学学报. 2022(03): 440-450 . 百度学术
21. 程超,钟秀梅,刘钊钊,刘富强,江志杰,王谦,陶冬旺. 饱和黄土动态液化和静态液化机理的差异性研究. 地震工程学报. 2022(01): 136-144 . 百度学术
22. 袁近远,李天宁,王兰民,汪云龙,陈龙伟,李兆焱,袁晓铭,王永志,陈卓识,李瑞山. 砂土液化概率计算新方法. 岩土工程学报. 2022(03): 541-549 . 本站查看
23. 王谦,钟秀梅,高中南,马金莲,万秀红,杨义煊,刘岸果. 门源M6.9地震诱发地质灾害特征研究. 地震工程学报. 2022(02): 352-359 . 百度学术
24. 葛一荀,张洁,祝刘文,程小久,廖先斌,汪华安,孔明,郑文棠,王占华. 砂土场地国标与美标标准贯入试验能量分析及击数转换关系研究. 工程地质学报. 2022(02): 507-519 . 百度学术
25. 包含,马扬帆,兰恒星,彭建兵,张科科,许江波,晏长根,孙强. 基于微结构量化的含渐变带黄土各向异性特征研究. 中国公路学报. 2022(10): 88-99 . 百度学术
26. 苏卓林,贾科敏,许成顺,豆鹏飞,张小玲. 双向地震作用下液化水平和倾斜场地-桩基-桥梁结构地震反应的差异研究. 地震科学进展. 2022(11): 505-512 . 百度学术
27. 宋洋,刘思源,王晨炟. 含水率和干湿循环对原状黄土变形特性的影响. 辽宁工程技术大学学报(自然科学版). 2021(02): 148-155 . 百度学术
28. 王玉峰,林棋文,李坤,史安文,李天话,程谦恭. 高速远程滑坡动力学研究进展. 地球科学与环境学报. 2021(01): 164-181 . 百度学术
29. 颜灵勇,李孝波,欧阳刚垒. 黄土地震滑坡形成机理研究的若干进展. 防灾科技学院学报. 2021(02): 46-53 . 百度学术
30. 马星宇,王兰民,王谦,王平,钟秀梅,蒲小武,刘富强. 饱和黄土液化流动性试验研究. 岩土工程学报. 2021(S1): 161-165 . 本站查看
31. 袁晓铭,费扬,陈龙伟,袁近远,陈同之,张思宇,王义德. 含剧烈地震动作用不同埋深砂土液化判别统一公式. 岩石力学与工程学报. 2021(10): 2101-2112 . 百度学术
32. 李旭东,王平,王丽丽,王会娟,常文斌,钱紫玲. 强震作用下坡顶建筑荷载对边坡稳定性影响研究. 地震工程学报. 2021(05): 1220-1227 . 百度学术
33. 张子东,张晓超,任鹏,崔雪婷. 非饱和黄土动力液化研究——以党家岔滑坡为例. 地震工程学报. 2021(05): 1228-1237 . 百度学术
34. 许成顺,贾科敏,杜修力,王志华,宋佳,张小玲. 液化侧向扩展场地-桩基础抗震研究综述. 防灾减灾工程学报. 2021(04): 768-791 . 百度学术
35. 马晓文,梁庆国,赵涛,周稳弟. 土动力学研究综述及思考. 世界地震工程. 2021(04): 217-230 . 百度学术
36. 许成顺,王冰,杜修力,岳冲,杨钰荣. 循环加载频率对砂土液化模式的影响试验研究. 土木工程学报. 2021(11): 109-118 . 百度学术
37. 郭海涛,许世阳,蒲小武,张晓军,马星宇. 海原地震石碑塬液化滑移地表特征形成机制探讨. 地震工程学报. 2020(05): 1159-1164 . 百度学术
38. 杨博,田文通,孙军杰,刘琨,徐舜华. 海原大地震诱发石碑塬黄土滑坡机制探讨. 地震工程学报. 2020(05): 1165-1172 . 百度学术
39. 马星宇,王兰民,钟秀梅,蒲小武,刘富强,王谦. 地震诱发石碑塬黄土地层液化滑移距离研究. 地震工程学报. 2020(06): 1674-1682 . 百度学术
40. 车福东,王涛,辛鹏,张泽林,梁昌玉,刘甲美. 近远震作用下黄土滑坡动力响应与变形——以甘肃天水震区黎坪村滑坡为例. 地质通报. 2020(12): 1981-1992 . 百度学术
41. MA Xingyu,WANG Lanmin,WANG Qian,WANG Ping,ZHONG Xiumei,PU Xiaowu,LIU Fuqiang,XU Xiaowei. Flow Characteristics of Large-Scale Liquefaction-Slip of the Loess Strata in Shibei Tableland, Guyuan City, Induced by the 1920 Haiyuan M8(1/2) Earthquake. Earthquake Research in China. 2020(04): 469-481 . 必应学术
其他类型引用(32)
-
其他相关附件