• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CUI Xianze, WEN Tao, LI Zhixiang, YANG Guangdong, LI Jin, WU Dazhou, FAN Yong. Retention and transport behavior of silicon micropowder in sand under periodical water level fluctuations[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1094-1101. DOI: 10.11779/CJGE202201229
Citation: CUI Xianze, WEN Tao, LI Zhixiang, YANG Guangdong, LI Jin, WU Dazhou, FAN Yong. Retention and transport behavior of silicon micropowder in sand under periodical water level fluctuations[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1094-1101. DOI: 10.11779/CJGE202201229

Retention and transport behavior of silicon micropowder in sand under periodical water level fluctuations

More Information
  • Received Date: October 06, 2022
  • Available Online: May 14, 2024
  • Due to the regulation of large-scale water conservancy projects and the influences of seasonal precipitation, the groundwater levels along the banks of rivers and lakes undergo periodic changes. The water level fluctuation is an important factor affecting the particle migration and sedimentation characteristics in the sand layer in groundwater recharge and other projects. In this study, a self-developed sand test system is used to evaluate the migration and sedimentation characteristics of particles under water level fluctuations. The results show that for the same fluctuation range, the continuous rise in the water level causes the number of suspended particles undergoing migration in the pore channels to increase. The horizontal diffusion becomes increasingly obvious, which drives the suspended particles to roll or move in the pore channels and increases their contact with the porous media, making it easier for the suspended particles to deposit on the surfaces of the porous media or in the corners of the pore channels. For different fluctuation amplitudes, when the smaller particles are injected, the overall concentration and peak value of the effluent also increase with the increasing fluctuation amplitude. Larger and smaller particles show opposite trends.
  • [1]
    LI J N, ZHOU Q Z, CAMPOS L C. The application of GAC sandwich slow sand filtration to remove pharmaceutical and personal care products[J]. Science of the Total Environment, 2018, 635: 1182-1190. doi: 10.1016/j.scitotenv.2018.04.198
    [2]
    亢涵, 王谋薇, 藏春月, 等. 地下水源热泵回灌堵塞的研究现状与展望[J]. 地球环境学报, 2017, 8(4): 320-326. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201704004.htm

    KANG Han, WANG Mouwei, ZANG Chunyue, et al. Research status and prospect of recharge clogging of groundwater heat pump[J]. Journal of Earth Environment, 2017, 8(4): 320-326. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201704004.htm
    [3]
    潘鼎, 唐红, 刘军. 地下水源热泵回灌非饱和渗流淤堵分析[J]. 岩石力学与工程学报, 2021, 40(4): 842-850. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104017.htm

    PAN Ding, TANG Hong, LIU Jun. Analysis of unsaturated seepage siltation of groundwater source heat pump recharge[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 842-850. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104017.htm
    [4]
    BAI B, XU T, NIE Q K, et al. Temperature-driven migration of heavy metal Pb2+ along with moisture movement in unsaturated soils[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119573. doi: 10.1016/j.ijheatmasstransfer.2020.119573
    [5]
    周志芳, 王萍, 李雅冰, 等. 一种求解承压含水层水文地质参数的新配线法[J]. 河海大学学报(自然科学版), 2019, 47(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201901002.htm

    ZHOU Zhifang, WANG Ping, LI Yabing, et al. A new type curve method for estimating hydrogeological parameters of confined aquifers[J]. Journal of Hohai University (Natural Sciences), 2019, 47(1): 7-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201901002.htm
    [6]
    王军霞. 江汉—洞庭平原流域水文模型与地下水数值模型耦合模拟研究[D]. 武汉: 中国地质大学, 2015.

    WANG Junxia. Study on Coupled Simulation of Watershed Hydrologic Model and Groundwater Numerial Modelin Jianghan-Dongting Plain[D]. Wuhan: China University of Geosciences, 2015. (in Chinese)
    [7]
    BAI B, ZHOU R, CAI G Q, et al. Coupled thermo-hydro-mechanical mechanism in view of the soil particle rearrangement of granular thermodynamics[J]. Computers and Geotechnics, 2021, 137: 104272. doi: 10.1016/j.compgeo.2021.104272
    [8]
    YANG W, FENG T T, FLURY M, et al. Effect of sulfamethazine on surface characteristics of biochar colloids and its implications for transport in porous media[J]. Environmental Pollution, 2020, 256: 113482. doi: 10.1016/j.envpol.2019.113482
    [9]
    BEAR J. Dynamics of Fluids in Porous Media[M]. London: Courier Corporation, 2013.
    [10]
    GUO Z, LIU X M, MA L, et al. Effects of particle morphology, pore size and surface coating of mesoporous silica on Naproxen dissolution rate enhancement[J]. Colloids and Surfaces B: Biointerfaces, 2013, 101: 228-235. doi: 10.1016/j.colsurfb.2012.06.026
    [11]
    CERVANTES-AVILÉS P, HUANG Y X, KELLER A A. Multi-technique approach to study the stability of silver nanoparticles at predicted environmental concentrations in wastewater[J]. Water Research, 2019, 166: 115072. doi: 10.1016/j.watres.2019.115072
    [12]
    MASSEI N, DIEPPOIS B, HANNAH D M, et al. Multi-time-scale hydroclimate dynamics of a regional watershed and links to large-scale atmospheric circulation: application to the Seine River catchment, France[J]. Journal of Hydrology, 2017, 546: 262-275. doi: 10.1016/j.jhydrol.2017.01.008
    [13]
    MESTICOU Z, KACEM M, DUBUJET P. Influence of ionic strength and flow rate on silt particle deposition and release in saturated porous medium: experiment and modeling[J]. Transport in Porous Media, 2014, 103(1): 1-24. doi: 10.1007/s11242-014-0285-8
    [14]
    GODINHO J R A, CHELLAPPAH K, COLLINS I, et al. Time-lapse imaging of particle invasion and deposition in porous media using in situ X-ray radiography[J]. Journal of Petroleum Science and Engineering, 2019, 177: 384-391. doi: 10.1016/j.petrol.2019.02.061
    [15]
    陈星欣, 白冰. 重力对饱和多孔介质中颗粒输运特性的影响[J]. 岩土工程学报, 2012, 34(9): 1661-1667. http://cge.nhri.cn/cn/article/id/14692

    CHEN Xingxin, BAI Bing. Effect of gravity on transport of particles in saturated porous media[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1661-1667. (in Chinese) http://cge.nhri.cn/cn/article/id/14692
    [16]
    刘泉声, 崔先泽, 张程远, 等. 粒径对多孔介质中悬浮颗粒迁移-沉积特性的影响[J]. 岩土工程学报, 2014, 36(10): 1777-1783. doi: 10.11779/CJGE201410003

    LIU Quansheng, CUI Xianze, ZHANG Chengyuan, et al. Effects of particle size on characteristics of transportation and deposition of suspended particles in porous media[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1777-1783. (in Chinese) doi: 10.11779/CJGE201410003
    [17]
    饶登宇, 白冰. 孔隙尺度下三维多孔介质扩散迂曲度的SPH计算[J]. 岩土工程学报, 2020, 42(5): 961-967. doi: 10.11779/CJGE202005019

    RAO Dengyu, BAI Bing. Pore-scale SPH simulations of diffusive tortuosity in 3-D porous media[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 961-967. (in Chinese) doi: 10.11779/CJGE202005019
    [18]
    张鹏远, 白冰, 蒋思晨. 孔隙结构和水动力对饱和多孔介质中颗粒迁移和沉积特性的耦合影响[J]. 岩土力学, 2016, 37(5): 1307-1316. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201605013.htm

    ZHANG Pengyuan, BAI Bing, JIANG Sichen. Coupled effects of hydrodynamic forces and pore structure on suspended particle transport and deposition in a saturated porous medium[J]. Rock and Soil Mechanics, 2016, 37(5): 1307-1316. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201605013.htm
    [19]
    CUI X Z, WU D Z, WANG H X, et al. Pore features and seepage characteristics of natural gap-graded sand with two size distributions[J]. Géotechnique, 2022: 1-12.
    [20]
    CUI X Z, FAN Y, WANG H X, et al. Experimental investigation of suspended particles transport in porous medium under variable temperatures[J]. Hydrological Processes, 2019, 33(7): 1117-1126.
    [21]
    BAI B, NIE Q K, ZHANG Y K, et al. Cotransport of heavy metals and SiO2 particles at different temperatures by seepage[J]. Journal of Hydrology, 2021, 597: 125771.
    [22]
    AHFIR N D, HAMMADI A, ALEM A, et al. Porous media grain size distribution and hydrodynamic forces effects on transport and deposition of suspended particles[J]. Journal of Environmental Sciences, 2017, 53: 161-172.
  • Related Articles

    [1]ZHANG Yu, ZHANG Qing, WANG Yijie, CAI Guojun, DONG Xiaoqiang, DU Yanjun, JIANG Ningjun. Engineering properties and environmental safety of biostimulated MICP-treated lead-contaminated soil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2352-2360. DOI: 10.11779/CJGE20230749
    [2]WANG Mao-hua, CHI Shi-chun, ZHOU Xiong-xiong. Modal identification of high earth-rock dams based on seismic records and SSI method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1279-1287. DOI: 10.11779/CJGE202107013
    [3]YU Kuan-yuan, GU Xiao-qiang, HUANG Mao-song, MA Xian-feng, LI Ning. Measurement and analysis of environmental vibration caused by maglev train[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 146-150. DOI: 10.11779/CJGE2020S1029
    [4]TANG Qiang, PAN Ling-ling, GAO Yu-feng, CHEN Su, YIN Li-xin. Strength and environmental behaviors of solidified fly ash under carbonation effect[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 645-654. DOI: 10.11779/CJGE201804008
    [5]CHEN Yun-min. A fundamental theory of environmental geotechnics and its application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 1-46. DOI: 10.11779/CJGE201401001
    [6]HE Wei, PAN Xing-yu, ZHANG Jun, FU Hong-yuan. Monitoring and environmental impact analysis of deep excavation of subway stations in river islands[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 478-483.
    [7]HE Xiaoyan, SUN D, an. Assessment on social and environmental impacts of dam break[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1752-1757.
    [8]BAI Xiaohong, ZHAO Yongqiang, HAN Pengju, QIAO Junyi, WU Zhian. Experimental study on mechanical property of cemented soil under environmental contaminations[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1260-1263.
    [9]LUO Guoyu, LI Xiaozhao, YAN Changhong, CHU Tongqing. The environmental geotechnology and geo-environmental study[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(1): 101-104.
    [10]Hsai Yang Fang. Environmental geotechnology-perspective in the 21st century[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 4-14.
  • Cited by

    Periodical cited type(6)

    1. 赵兴东. 黄金矿山深井开采研究进展与发展趋势. 黄金. 2024(08): 1-18 .
    2. 李盛南,肖俊,李玉,刘新喜,梁桥,常锦,刘杰. 基于细观裂纹扩展演化的岩石损伤本构模型研究. 岩石力学与工程学报. 2023(03): 640-648 .
    3. 谭文辉,刘慧敏,梁爽,张亚飞,王培涛. 节理岩体的等效“层理”方法及其工程应用. 矿业研究与开发. 2023(04): 116-124 .
    4. 于波,拾亭,刘磊. 柱状节理玄武岩强度各向异性特征对承压板试验结果的影响分析. 市政技术. 2023(07): 190-196 .
    5. 肖维民,韩俊成,田梦婷. 柱状节理岩体水-力各向异性特性研究进展. 工程地质学报. 2023(03): 880-892 .
    6. 穆成林,李华东,裴向军,王超,王睿. 溶蚀岩体各向异性力学性质的试验研究. 西南交通大学学报. 2022(05): 1070-1076+1112 .

    Other cited types(9)

Catalog

    Article views (234) PDF downloads (65) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return