Triggering types, characteristics and disaster mechanism of seismic loess landslides
-
摘要: 基于现场调查勘探、无人机航测和大型振动台试验,系统研究了黄土地震滑坡的触发类型、特征与成灾机制。结果表明,黄土地震滑坡在空间分布、单体规模、致灾范围、平面形态、地形水文条件、地震动强度、土层厚度、与发震断层关系等方面具有显著特征。黄土地震滑坡从触发机理角度可划分为剪切型滑坡、液化型滑坡、震陷型滑坡三种类型。剪切型滑坡根据滑动面地层岩性可进一步分为黄土层内滑坡、黄土与泥岩接触面滑坡、切入基岩的切层滑坡;液化型滑坡可根据液化层位置划分为底部液化滑移型、表层液化泥流型、底-表层联合液化滑流型等。震陷型滑坡可根据坡体破坏形式细分为陷滑型、崩滑型等两种。本文可为黄土地震滑坡的风险评估与防控提供科学依据。Abstract: Based on the field investigation and exploration, unmanned aerial survey and large-scale shaking table tests, the triggering types, characteristics and disaster-generating mechanism of seismic loess landslides are systematically studied. The results show that the earthquake-induced loess landslides have their distinctive characteristics in spatial distribution, single size, influencing area, plane modality, topographical and hydrological conditions, seismic intensity, deposit thickness and relations to seismic faults. They can be classified into three types from the perspective of the triggering mechanism: shear landslides, liquefaction landslides and seismic subsidence landslides. The shear landslides can be further classified according to the lithology of the sliding surface strata into three types: landslides within a loess layer, landslides on the contact surface between loess and mudstone, and landslides cutting into bedrock. The liquefaction landslides can be divided according to the location of the liquefaction layer into three types: deep liquefaction sliding type, surface liquefaction mudflow, and combined deep-surface liquefaction type. The seismic subsidence landslides can be divided into two types of landslides, subsidence slide and avalanche slide, according to the damage modes caused by seismic subsidence. This study may provide a scientific basis for the risk assessment, prevention and control of loess seismic landslides.
-
-
图 1 1920年海原大地震地震滑坡和灾害分布图(据Close等[4], 本文清绘)
Figure 1. Distribution of landslides and disasters induced by Haiyuan Ms 8.5 earthquake in 1920 (Upton Close, 1922, clearly drawn by the authors)
表 1 黄土地区9次大震和强震诱发的滑坡灾害
Table 1 Landslides induced by 9 great and strong earthquakes in Loess Plateau
地震名称 震级 震中烈度 断裂性质 遇难人数 地震岩土灾害 1303年洪洞地震 8.0 Ⅺ 右旋走滑 20万 滑坡、液化滑移 1556年华县地震 Ⅺ 正断 83万 密集滑坡、震陷 1654年天水南地震 8.0 Ⅺ 左旋走滑兼正断 3.1万 密集滑坡 1695年临汾地震 Ⅹ 正断 5.3万 滑坡、液化滑移 1718年通渭地震 7.5 Ⅹ 逆冲 4万 密集滑坡 1879年武都地震 8.0 XI 逆冲兼右旋走滑 2.2万 滑坡、崩塌 1920年海原地震 8.5 Ⅻ 左旋走滑 27万 密集滑坡、液化滑移 1927年古浪地震 8.0 Ⅺ 西段逆冲,东段正断 4万 密集滑坡 2013年岷—漳地震 6.6 Ⅷ 逆冲为主,兼具左旋走滑 12 滑坡、液化泥流 表 2 底部饱和液化滑移型模型地层参数
Table 2 Stratum parameters of bottom saturated liquefaction slip model
地层土样 取样深度/m 干密度/(g·cm-3) 含水率w/% 孔隙比 饱和度Sr /% 颗粒组成/% 黏粒 粉粒 砂粒 上部非饱和黄土层(Q3、Q4) 6.5 1.35 5.51 1.12 13.36 13.15 77.99 8.86 第一古土壤层(Q3) 13.5 1.68 11.14 0.79 38.08 16.97 81.01 2.02 饱和砂质黄土层(Q3) 16.5 1.65 27.69 1.09 75.40 12.20 59.66 28.14 第二古土壤层(Q2) 35.5 1.72 26.82 1.00 72.82 13.22 66.21 20.57 -
[1] 王兰民, 蒲小武, 陈金昌. 黄土高原地震诱发滑坡分布特征与灾害风险[J]. 城市与减灾, 2019(3): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJZ201903009.htm WANG Lanmin, PU Xiaowu, CHEN Jinchang. Distribution characteristics and disaster risk of earthquake-induced landslides in loess plateau[J]. City and Disaster Reduction, 2019(3): 33-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSJZ201903009.htm
[2] 赵晋泉, 张大卫, 高树义, 等. 1303年山西洪洞8级大地震郇堡地滑之研究[J]. 山西地震, 2003(3): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ200303006.htm ZHAO Jinquan, ZHANG Dawei, GAO Shuyi, et al. Huanbu ground slide, the relic of 1303 Hongtong, Shanxi, earthquake of M8[J]. Earthquake Research in Shanxi, 2003(3): 16-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ200303006.htm
[3] 陈国顺, 王国强. 临汾1695年八级地震及震后地表垂直运动[J]. 山西地震, 1984(4): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ198404007.htm CHEN Guoshun, WANG Guoqiang. The vertical movement of ground surface after the 1695 M8 earthquake in Linfen[J]. Earthquake Research in Shanxi, 1984(4): 31-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ198404007.htm
[4] CLOSE U, MCCORMICK E. Where the mountains walked[J]. The National Geographic Magazine, 1922, LI(5): 443-464.
[5] 张晓超, 裴向军, 张茂省, 等. 强震触发黄土滑坡流滑机理的试验研究: 以宁夏党家岔滑坡为例[J]. 工程地质学报, 2018, 26(5): 1219-1226. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201805013.htm ZHANG Xiaochao, PEI Xiangjun, ZHANG Maosheng, et al. Experimental study on mechanism of flow slide of loess landslides triggered by strong earthquake—a case study in Dangjiacha, Ningxia Province[J]. Journal of Engineering Geology, 2018, 26(5): 1219-1226. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201805013.htm
[6] 王家鼎, 张倬元. 典型高速黄土滑坡群的系统工程地质研究[M]. 成都: 四川科学技术出版社, 1999. WANG Jiading, ZHANG Zhuoyuan. Systematic Engineering Geological Study on Typical High-Speed Loess Landslide Group[M]. Chengdu: Sichuan Scientific & Technical Publishers, 1999. (in Chinese)
[7] 王家鼎, 张倬元. 地震诱发高速黄土滑坡的机理研究[J]. 岩土工程学报, 1999, 21(6): 670-674. http://www.cgejournal.com/cn/article/id/10420 WANG Jiading, ZHANG Zhuoyuan. A study on the mechanism of high speed loess landslide induced by earthquake[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 670-674. (in Chinese) http://www.cgejournal.com/cn/article/id/10420
[8] WANG G H, SASSA K. Pore-pressure generation and movement of rainfall-induced landslides: effects of grain size and fine-particle content[J]. Engineering Geology, 2003, 69(1/2): 109-125.
[9] 张振中. 黄土地震灾害预测[M]. 北京: 地震出版社, 1999. ZHANG Zhenzhong. Earthquake Disaster Prediction of Loess[M]. Beijing: Seismological Press, 1999. (in Chinese)
[10] 卢育霞, 石玉成, 陈永明, 等. 地震诱发黄土滑坡的滑距估测[J]. 西北地震学报, 2006(3): 248-251. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200603009.htm LU Yuxia, SHI Yucheng, CHEN Yongming, et al. Slippage estimation of the loess landslide triggered by earthquake[J]. Northwestern Seismological Journal, 2006(3): 248-251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200603009.htm
[11] 王鼐, 王兰民, 王谦, 等. 黄土高原地震作用下黄土滑坡滑距预测方法[J]. 地震工程学报, 2016, 38(4): 533-540. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201604007.htm WANG Nai, WANG Lanmin, WANG Qian, et al. Forecasting method for sliding distance of seismic landslides on the loess plateau, China[J]. China Earthquake Engineering Journal, 2016, 38(4): 533-540. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201604007.htm
[12] 王兰民. 黄土地层大规模地震液化滑移的机理与风险评估[J]. 岩土工程学报, 2020, 42(1): 1-19. doi: 10.11779/CJGE202001001 WANG Lanmin. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 1-19. (in Chinese) doi: 10.11779/CJGE202001001
[13] 国家地震局兰州地震研究所, 宁夏回族自治区地震队. 一九二○年海原大地震[M]. 北京: 地震出版社, 1980. Lanzhou Institute of Seismology, State Seismological Bureau, Seismological Team of Ningxia Hui Autonomous Region. Haiyuan Earthquake in 1920[M]. Beijing: Seismological Press, 1980. (in Chinese)
[14] 王兰民. 黄土动力学[M]. 北京: 地震出版社, 2003. WANG Lanmin. Loess Dynamics[M]. Beijing: Seismological Press, 2003. (in Chinese)
[15] 白铭学, 王增光. 宁夏黄土高原区低角度滑移研究报告[R]. 宁夏: 宁夏回族自治区地震局, 1987. BAI Mingxue, WANG Zengguang. Study on Low Angle Slip in Loess Plateau of Ningxia[R]. Ningxia: Earthquake Agency of Ningxia Hui Autonomous Region, 1987. (in Chinese)
[16] 王兰民, 吴志坚. 岷县漳县6.6级地震震害特征及其启示[J]. 地震工程学报, 2013, 35(3): 401-412. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201303002.htm WANG Lanmin, WU Zhijian. Earthquake damage characteristics of the Minxian-Zhangxian MS6.6 earthquake and its lessons[J]. China Earthquake Engineering Journal, 2013, 35(3): 401-412. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201303002.htm
-
其他相关附件