• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

黄土地震滑坡的触发类型、特征与成灾机制

王兰民, 柴少峰, 薄景山, 王平, 许世阳, 李孝波, 蒲小武

王兰民, 柴少峰, 薄景山, 王平, 许世阳, 李孝波, 蒲小武. 黄土地震滑坡的触发类型、特征与成灾机制[J]. 岩土工程学报, 2023, 45(8): 1543-1554. DOI: 10.11779/CJGE20220531
引用本文: 王兰民, 柴少峰, 薄景山, 王平, 许世阳, 李孝波, 蒲小武. 黄土地震滑坡的触发类型、特征与成灾机制[J]. 岩土工程学报, 2023, 45(8): 1543-1554. DOI: 10.11779/CJGE20220531
WANG Lanmin, CHAI Shaofeng, BO Jingshan, WANG Ping, XU Shiyang, LI Xiaobo, PU Xiaowu. Triggering types, characteristics and disaster mechanism of seismic loess landslides[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1543-1554. DOI: 10.11779/CJGE20220531
Citation: WANG Lanmin, CHAI Shaofeng, BO Jingshan, WANG Ping, XU Shiyang, LI Xiaobo, PU Xiaowu. Triggering types, characteristics and disaster mechanism of seismic loess landslides[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1543-1554. DOI: 10.11779/CJGE20220531

黄土地震滑坡的触发类型、特征与成灾机制  English Version

基金项目: 

国家自然科学基金重点项目 U1939209

中国地震局地震科技星火计划项目 XH20058Y

中国地震局地震预测研究所兰州科技创新基地基本科研业务费专项项目 2020IESLZ06

详细信息
    作者简介:

    王兰民(1960—),男,博士,研究员,博士生导师,主要从事黄土动力学与岩土地震工程方面的研究工作。E-mail: wanglm@gsdzj.gov.cn

  • 中图分类号: TU435

Triggering types, characteristics and disaster mechanism of seismic loess landslides

  • 摘要: 基于现场调查勘探、无人机航测和大型振动台试验,系统研究了黄土地震滑坡的触发类型、特征与成灾机制。结果表明,黄土地震滑坡在空间分布、单体规模、致灾范围、平面形态、地形水文条件、地震动强度、土层厚度、与发震断层关系等方面具有显著特征。黄土地震滑坡从触发机理角度可划分为剪切型滑坡、液化型滑坡、震陷型滑坡三种类型。剪切型滑坡根据滑动面地层岩性可进一步分为黄土层内滑坡、黄土与泥岩接触面滑坡、切入基岩的切层滑坡;液化型滑坡可根据液化层位置划分为底部液化滑移型、表层液化泥流型、底-表层联合液化滑流型等。震陷型滑坡可根据坡体破坏形式细分为陷滑型、崩滑型等两种。本文可为黄土地震滑坡的风险评估与防控提供科学依据。
    Abstract: Based on the field investigation and exploration, unmanned aerial survey and large-scale shaking table tests, the triggering types, characteristics and disaster-generating mechanism of seismic loess landslides are systematically studied. The results show that the earthquake-induced loess landslides have their distinctive characteristics in spatial distribution, single size, influencing area, plane modality, topographical and hydrological conditions, seismic intensity, deposit thickness and relations to seismic faults. They can be classified into three types from the perspective of the triggering mechanism: shear landslides, liquefaction landslides and seismic subsidence landslides. The shear landslides can be further classified according to the lithology of the sliding surface strata into three types: landslides within a loess layer, landslides on the contact surface between loess and mudstone, and landslides cutting into bedrock. The liquefaction landslides can be divided according to the location of the liquefaction layer into three types: deep liquefaction sliding type, surface liquefaction mudflow, and combined deep-surface liquefaction type. The seismic subsidence landslides can be divided into two types of landslides, subsidence slide and avalanche slide, according to the damage modes caused by seismic subsidence. This study may provide a scientific basis for the risk assessment, prevention and control of loess seismic landslides.
  • 图  1   1920年海原大地震地震滑坡和灾害分布图(据Close等[4], 本文清绘)

    Figure  1.   Distribution of landslides and disasters induced by Haiyuan Ms 8.5 earthquake in 1920 (Upton Close, 1922, clearly drawn by the authors)

    图  2   1920年海原MS8.5级地震引发的大规模黄土滑坡

    Figure  2.   Large-scale loess landslides induced by Haiyuan MS 8.5 earthquake in 1920

    图  3   剪切型黄土滑坡示意图

    Figure  3.   Schematic diagram of shear loess landslide

    图  4   1920年海原8.5地震静宁孙家沟黄土层内剪切型滑坡

    Figure  4.   Shear landslide within loess strata at Sunjiagou in Jingning county induced by Haiyuan MS 8.5 earthquake

    图  5   液化型黄土滑坡示意图

    Figure  5.   Schematic diagram of liquefied loess landslide

    图  6   1920年海原MS 8.5级地震触发石碑塬黄土液化滑移[15]

    Figure  6.   Liquefaction-triggered loess landslide at Shibeiyuan during Haiyuan MS 8.5 earthquake in 1920[15]

    图  7   2013年岷县-漳县MS 6.6级地震永光村西底-表联合液化型黄土流滑

    Figure  7.   Mud flow and landslide at west Yongguang village induced by liquefaction in both bottom and surface layers during the Minxian-Zhangxian MS 6.6 earthquake in 2013

    图  8   震陷型黄土滑坡示意图

    Figure  8.   Schematic diagram of seismic subsidence type landslide

    图  9   典型震陷型黄土滑坡

    Figure  9.   Seismic subsidence-triggered loess landslides

    图  10   剪切型滑坡振动台试验宏观破坏特征

    Figure  10.   Macroscopic failure characteristics of shear landslidebased on shaking table tests

    图  11   黄土-基岩接触面剪切型滑坡振动台试验模型与传感器布设

    Figure  11.   Shaking table test model and layout of sensors for loess-bedrock interface shear landslide

    图  12   黄土-基岩接触面剪切滑坡不同位置加速度放大效应

    Figure  12.   Acceleration amplification effects of shear landslide on loess-bedrock interface at different locations

    图  13   黄土-基岩滑坡破坏时接触面和上覆黄土土压力分布

    Figure  13.   Soil pressure distribution of loess-bedrock interface and overlying loess during shear landslide failure

    图  14   黄土-基岩接触面滑坡振动台试验宏观破坏特征

    Figure  14.   Macroscopic failure characteristics of loess-bedrock shear landslide based on shaking table tests

    图  15   底部液化型黄土滑移振动台试验模型与传感器布设

    Figure  15.   Shaking-table test model for liquefaction at bottom-triggered sliding of loess deposit and layout of sensors

    图  16   液化型黄土滑坡饱和土层孔隙水压力增长趋势

    Figure  16.   Increasing trend of pore water pressure in saturated soil of liquefaction loess landslide base on shaking table tests

    图  17   底部饱和液化型黄土滑坡振动台试验宏观破坏特征

    Figure  17.   Failure characteristics of liquefaction at bottom-triggered sliding of loess deposit

    图  18   表层液化流滑型滑坡试验模型尺寸与传感器布设

    Figure  18.   Sizes of shaking-table test model and layout of sensors for surface liquefaction-triggered sliding flow of loess slope

    图  19   表层饱和液化泥流型黄土斜坡流滑振动台试验宏观破坏特征

    Figure  19.   Macroscopic failure characteristics of liquefaction- triggered mud flow of loess slope with saturated surface based on shaking table tests

    图  20   坡角至坡顶不同部位急剧增长的孔隙水压力

    Figure  20.   Dramatic increase of pore water pressures at different locations from slope foot to slope crest

    图  21   黄土震陷性滑坡振动台试验模型与传感器布设

    Figure  21.   Shaking-table test model and layout of sensors for loess landslides due to seismic subsidence

    图  22   震陷型黄土滑坡振动台试验宏观破坏特征

    Figure  22.   Macroscopic failure characteristics of seismic subsidence- triggered loess landslide in shaking table tests

    图  23   基于应变观测的黄土斜坡震陷变形失稳过程

    Figure  23.   Seismic subsidence-triggered deformation and instability process of loess slope based on strain observation

    表  1   黄土地区9次大震和强震诱发的滑坡灾害

    Table  1   Landslides induced by 9 great and strong earthquakes in Loess Plateau

    地震名称 震级 震中烈度 断裂性质 遇难人数 地震岩土灾害
    1303年洪洞地震 8.0 右旋走滑 20万 滑坡、液化滑移
    1556年华县地震 814 正断 83万 密集滑坡、震陷
    1654年天水南地震 8.0 左旋走滑兼正断 3.1万 密集滑坡
    1695年临汾地震 734 正断 5.3万 滑坡、液化滑移
    1718年通渭地震 7.5 逆冲 4万 密集滑坡
    1879年武都地震 8.0 XI 逆冲兼右旋走滑 2.2万 滑坡、崩塌
    1920年海原地震 8.5 左旋走滑 27万 密集滑坡、液化滑移
    1927年古浪地震 8.0 西段逆冲,东段正断 4万 密集滑坡
    2013年岷—漳地震 6.6 逆冲为主,兼具左旋走滑 12 滑坡、液化泥流
    下载: 导出CSV

    表  2   底部饱和液化滑移型模型地层参数

    Table  2   Stratum parameters of bottom saturated liquefaction slip model

    地层土样 取样深度/m 干密度/(g·cm-3) 含水率w/% 孔隙比 饱和度Sr /% 颗粒组成/%
    黏粒 粉粒 砂粒
    上部非饱和黄土层(Q3、Q4 6.5 1.35 5.51 1.12 13.36 13.15 77.99 8.86
    第一古土壤层(Q3 13.5 1.68 11.14 0.79 38.08 16.97 81.01 2.02
    饱和砂质黄土层(Q3 16.5 1.65 27.69 1.09 75.40 12.20 59.66 28.14
    第二古土壤层(Q2 35.5 1.72 26.82 1.00 72.82 13.22 66.21 20.57
    下载: 导出CSV
  • [1] 王兰民, 蒲小武, 陈金昌. 黄土高原地震诱发滑坡分布特征与灾害风险[J]. 城市与减灾, 2019(3): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJZ201903009.htm

    WANG Lanmin, PU Xiaowu, CHEN Jinchang. Distribution characteristics and disaster risk of earthquake-induced landslides in loess plateau[J]. City and Disaster Reduction, 2019(3): 33-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSJZ201903009.htm

    [2] 赵晋泉, 张大卫, 高树义, 等. 1303年山西洪洞8级大地震郇堡地滑之研究[J]. 山西地震, 2003(3): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ200303006.htm

    ZHAO Jinquan, ZHANG Dawei, GAO Shuyi, et al. Huanbu ground slide, the relic of 1303 Hongtong, Shanxi, earthquake of M8[J]. Earthquake Research in Shanxi, 2003(3): 16-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ200303006.htm

    [3] 陈国顺, 王国强. 临汾1695年八级地震及震后地表垂直运动[J]. 山西地震, 1984(4): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ198404007.htm

    CHEN Guoshun, WANG Guoqiang. The vertical movement of ground surface after the 1695 M8 earthquake in Linfen[J]. Earthquake Research in Shanxi, 1984(4): 31-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ198404007.htm

    [4]

    CLOSE U, MCCORMICK E. Where the mountains walked[J]. The National Geographic Magazine, 1922, LI(5): 443-464.

    [5] 张晓超, 裴向军, 张茂省, 等. 强震触发黄土滑坡流滑机理的试验研究: 以宁夏党家岔滑坡为例[J]. 工程地质学报, 2018, 26(5): 1219-1226. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201805013.htm

    ZHANG Xiaochao, PEI Xiangjun, ZHANG Maosheng, et al. Experimental study on mechanism of flow slide of loess landslides triggered by strong earthquake—a case study in Dangjiacha, Ningxia Province[J]. Journal of Engineering Geology, 2018, 26(5): 1219-1226. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201805013.htm

    [6] 王家鼎, 张倬元. 典型高速黄土滑坡群的系统工程地质研究[M]. 成都: 四川科学技术出版社, 1999.

    WANG Jiading, ZHANG Zhuoyuan. Systematic Engineering Geological Study on Typical High-Speed Loess Landslide Group[M]. Chengdu: Sichuan Scientific & Technical Publishers, 1999. (in Chinese)

    [7] 王家鼎, 张倬元. 地震诱发高速黄土滑坡的机理研究[J]. 岩土工程学报, 1999, 21(6): 670-674. http://www.cgejournal.com/cn/article/id/10420

    WANG Jiading, ZHANG Zhuoyuan. A study on the mechanism of high speed loess landslide induced by earthquake[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 670-674. (in Chinese) http://www.cgejournal.com/cn/article/id/10420

    [8]

    WANG G H, SASSA K. Pore-pressure generation and movement of rainfall-induced landslides: effects of grain size and fine-particle content[J]. Engineering Geology, 2003, 69(1/2): 109-125.

    [9] 张振中. 黄土地震灾害预测[M]. 北京: 地震出版社, 1999.

    ZHANG Zhenzhong. Earthquake Disaster Prediction of Loess[M]. Beijing: Seismological Press, 1999. (in Chinese)

    [10] 卢育霞, 石玉成, 陈永明, 等. 地震诱发黄土滑坡的滑距估测[J]. 西北地震学报, 2006(3): 248-251. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200603009.htm

    LU Yuxia, SHI Yucheng, CHEN Yongming, et al. Slippage estimation of the loess landslide triggered by earthquake[J]. Northwestern Seismological Journal, 2006(3): 248-251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200603009.htm

    [11] 王鼐, 王兰民, 王谦, 等. 黄土高原地震作用下黄土滑坡滑距预测方法[J]. 地震工程学报, 2016, 38(4): 533-540. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201604007.htm

    WANG Nai, WANG Lanmin, WANG Qian, et al. Forecasting method for sliding distance of seismic landslides on the loess plateau, China[J]. China Earthquake Engineering Journal, 2016, 38(4): 533-540. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201604007.htm

    [12] 王兰民. 黄土地层大规模地震液化滑移的机理与风险评估[J]. 岩土工程学报, 2020, 42(1): 1-19. doi: 10.11779/CJGE202001001

    WANG Lanmin. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 1-19. (in Chinese) doi: 10.11779/CJGE202001001

    [13] 国家地震局兰州地震研究所, 宁夏回族自治区地震队. 一九二○年海原大地震[M]. 北京: 地震出版社, 1980.

    Lanzhou Institute of Seismology, State Seismological Bureau, Seismological Team of Ningxia Hui Autonomous Region. Haiyuan Earthquake in 1920[M]. Beijing: Seismological Press, 1980. (in Chinese)

    [14] 王兰民. 黄土动力学[M]. 北京: 地震出版社, 2003.

    WANG Lanmin. Loess Dynamics[M]. Beijing: Seismological Press, 2003. (in Chinese)

    [15] 白铭学, 王增光. 宁夏黄土高原区低角度滑移研究报告[R]. 宁夏: 宁夏回族自治区地震局, 1987.

    BAI Mingxue, WANG Zengguang. Study on Low Angle Slip in Loess Plateau of Ningxia[R]. Ningxia: Earthquake Agency of Ningxia Hui Autonomous Region, 1987. (in Chinese)

    [16] 王兰民, 吴志坚. 岷县漳县6.6级地震震害特征及其启示[J]. 地震工程学报, 2013, 35(3): 401-412. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201303002.htm

    WANG Lanmin, WU Zhijian. Earthquake damage characteristics of the Minxian-Zhangxian MS6.6 earthquake and its lessons[J]. China Earthquake Engineering Journal, 2013, 35(3): 401-412. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201303002.htm

图(23)  /  表(2)
计量
  • 文章访问数:  750
  • HTML全文浏览量:  73
  • PDF下载量:  283
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-04
  • 网络出版日期:  2023-08-06

目录

    /

    返回文章
    返回