• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

浅埋房式采空区下长壁采场动载矿压发生机制

霍丙杰, 荆雪冬, 范张磊, 谢伟, 段志华, 解振华

霍丙杰, 荆雪冬, 范张磊, 谢伟, 段志华, 解振华. 浅埋房式采空区下长壁采场动载矿压发生机制[J]. 岩土工程学报, 2019, 41(6): 1116-1123. DOI: 10.11779/CJGE201906016
引用本文: 霍丙杰, 荆雪冬, 范张磊, 谢伟, 段志华, 解振华. 浅埋房式采空区下长壁采场动载矿压发生机制[J]. 岩土工程学报, 2019, 41(6): 1116-1123. DOI: 10.11779/CJGE201906016
HUO Bing-jie, JING Xue-dong, FAN Zhang-lei, XIE Wei, DUAN Zhi-hua, XIE Zhen-hua. Mechanism of dynamic load of longwall mining under shallow room mining goaf[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1116-1123. DOI: 10.11779/CJGE201906016
Citation: HUO Bing-jie, JING Xue-dong, FAN Zhang-lei, XIE Wei, DUAN Zhi-hua, XIE Zhen-hua. Mechanism of dynamic load of longwall mining under shallow room mining goaf[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1116-1123. DOI: 10.11779/CJGE201906016

浅埋房式采空区下长壁采场动载矿压发生机制  English Version

基金项目: 国家自然科学基金项目(51504127,51774174)
详细信息
    作者简介:

    霍丙杰(1980— ),男,博士,副教授,主要从事矿山压力与矿井动力灾害防治研究工作。Email: huobingjie@163.com。

  • 中图分类号: TD325

Mechanism of dynamic load of longwall mining under shallow room mining goaf

  • 摘要: 为了揭示浅埋房式采空区对下位煤层开采矿压显现的控制机制,降低工作面过房式采空区的动压显现强度和压架风险,以神东矿区霍洛湾煤矿2-2煤层房式采空区下3-1煤层长壁开采工作面动压特征为研究对象,将3-1煤层覆岩结构分为四类,利用理论分析和相似材料模拟等方法,系统研究了不同覆岩结构类型运动特征、力学模型及对3-1煤层长壁工作面的动压控制机制。结果表明:房式采空区稳定房柱下易形成上下位关键层双悬臂梁结构,双悬臂梁结构协同失稳是形成动载矿压的主要原因;房柱失稳区主关键层形成的不稳定砌体梁结构及靠近大煤柱未失稳的房柱随下位煤层开采滑落失稳是导致长壁工作面动载矿压发生的原因;当3-1煤层工作面上覆前方为房柱失稳区时,工作面推出集中煤柱时的动载矿压是由于大煤柱两侧关键块已提前滑落失稳,两关键块间无作用力,倒梯形岩柱与亚关键层联合失稳作用结果;当3-1煤层工作面上覆前方为房柱稳定区时,工作面推出集中煤柱时,动载矿压是由房柱失稳所致。
    Abstract: In order to explore the control mechanism of pressure appearing in the lower coal seam of shallow-buried coal bed with room mining goaf, to reduce the dynamic pressure of the working face through the room mining goaf, and to mitigate the risk caused by the coal pillar due to removal of hydraulic support, dynamic pressure characteristics of the 3-1 coal bed working face with longwall mining under the 2-2 coal bed room mining goaf are studied. The overburden structure of 3-1 coal seam is divided into four types. The theoretical analysis and simulation of similar materials are adopted to analyze the structure and motion models for the overlying strata under dynamic load, and to reveal the mechanism of dynamic pressure. Conclusions are as follows: with the stability of the room goaf, the double cantilever beam structures easily lead to the upper and lower key layers, and the fracture of the key stratum is the main reason for the formation of dynamic load. The unstable masonry beam structure with the instability of the main roof and the room pillars near the large coal pillar are not unstable. The instability of the structure is caused by the collapse of the lower coal seam, resulting in the dynamic ground pressure. The key block firstly slides due to instability, and two key blocks without force and trapezoidal weight of rock pillar above the coal pillar are directly applied on the working face, which causes the roof to fall behind. When the coal pillar cannot effectively support the above inverted trapezoidal rock pillar, the instability of trapezoidal rock pillar and crack movement of roof collapse cause dynamic load in common.
  • [1] 霍丙杰, 范张磊, 谢伟, 等. 浅埋房式采空区覆岩结构及对下位煤层开采的影响[J].安全与环境学报, 2018, 18(2): 468-473.
    (HUO Bing-jie, FAN Zhang-lei, XIE Wei, et al.Overburdened structure frames of the room mining goaf in the shallow coal seam and its impact on the lower level mining[J]. Journal of Safety and Environment, 2018, 18(2): 468-473. (in Chinese))
    [2] 解兴智. 浅埋煤层房柱式采空区下长壁开采矿压显现特征[J]. 煤炭学报, 2012, 37(6): 898-902.
    (XIE Xing-zhi.Study on the characteristics of strata behavior in shallow seam longwall mining under the room-and-pillar mining goaf[J]. Journal of China Coal Society, 2012, 37(6): 898-902. (in Chinese))
    [3] 解兴智, 范志忠. 房柱采空区下长壁开采工作面支架支护强度研究[J]. 煤矿开采, 2014, 19(4): 108-111.
    (XIE Xing-zhi, FAN Zhi-zhong.Supporting density of long-wall mining face under room-and-pillar gob[J]. Coal Mining Technology, 2014, 19(4): 108-111. (in Chinese))
    [4] 孔令海, 王永仁, 李少刚. 房柱采空区下回采工作面覆岩运动规律研究[J]. 煤炭科学技术, 2015, 43(5): 26-29.
    (KONG Ling-hai, WANG Yong-ren, LI Shao-gang.Analysis on overburden strata movement law of coal mining face under goaf of room and pillar mining face[J]. Coal Science and Technology, 2015, 43(5): 26-29. (in Chinese))
    [5] 杨真, 童兵, 黄成成, 等. 近距离房柱采空区下长壁采场顶板垮落特征研究[J]. 采矿与安全工程学报, 2012, 29(2): 157-161.
    (YANG Zhen, TONG Bing, HUANG Cheng-cheng, et al.Study on the movement law of overlying strata in mining face under room and pillar goaf[J]. Journal of Mining & Safety Engineering, 2012, 29(2): 157-161. (in Chinese))
    [6] 杨治林. 浅埋煤层长壁开采顶板岩层灾害控制研究[J]. 岩土力学, 2011, 29(增刊1): 459-463.
    (YANG Zhi-lin.Study of controlling catastrophe for roof strata in shallow seam longwall mining[J]. Rock and Soil Mechanics, 2011, 29(S1): 459-463. (in Chinese))
    [7] 李浩荡, 杨汉宏, 张斌, 等. 浅埋房式采空区集中煤柱下综采动载控制研究[J]. 煤炭学报, 2015, 40(增刊1): 6-11.
    (LI Hao-dang, YANG Han-hong, ZHANG Bin, et al.Control study of strong strata behaviors during the fully mechanized working face out of concentrated coal pillar in a shallow depth seam in proximity beneath a room mining goaf[J]. Journal of China Coal Society, 2015, 40(S1): 6-11. (in Chinese))
    [8] 杨俊哲. 浅埋近距离煤层过上覆采空区及煤柱动压防治技术[J]. 煤炭科学技术, 2015, 43(6): 9-13,40.(YANG Jun-zhe. Dynamic pressure prevention and control technology of coal mining face with shallow depth and contiguous seams passing through overburden goaf and coal pillars[J]. Coal Science and Technology, 2015, 43(6): 9-13, 40. (in Chinese))
    [9] 鞠金峰, 许家林. 倾向煤柱边界超前失稳对工作面出煤柱动载矿压的影响[J]. 煤炭学报, 2012, 37(7): 1080-1087.
    (JU Jin-feng, XU Jia-lin.Influence of leading instability in the upper dip coal pillar boundary to the strong strata behaviors during the working face out of the pillar[J]. Journal of China Coal Society, 2012, 37(7): 1080-1087. (in Chinese))
    [10] 鞠金峰, 许家林. 浅埋近距离煤层出煤柱开采压架防治对策[J]. 采矿与安全工程学报, 2013, 30(3): 323-330.
    (JU Jin-feng, XU Jia-lin.Prevention measures for support crushing while mining out the upper coal pillar in close distance shallow seams[J]. Journal of Mining & Safety Engineering, 2013, 30(3): 323-330. (in Chinese))
    [11] 鞠金峰, 许家林, 朱卫兵, 等. 近距离煤层工作面出倾向煤柱动载矿压机理研究[J]. 煤炭学报, 2010(1): 15-20.
    (JU Jin-feng, XU Jia-lin, ZHU Wei-bing, et al.Mechanism of strong strata behaviors during the working faceout of the upper dip coal pillar in contiguous seams[J]. Journal of China Coal Society, 2010(1): 15-20. (in Chinese))
    [12] 鞠金峰, 许家林, 朱卫兵, 等. 大柳塔煤矿22103综采面压架机理及防治技术[J]. 煤炭科学技术, 2012, 40(2): 4-7.
    (JU Jin-feng, XU Jia-lin, ZHU Wei-bing, et al.Hydraulic powered support jammed mechanism and prevention technology of fully mechanized coal mining face in Daliuta mine[J]. Coal Science and Technology, 2012, 40(2): 4-7. (in Chinese))
    [13] 许家林, 朱卫兵, 鞠金峰. 浅埋煤层开采压架类型[J]. 煤炭学报, 2014, 39(08): 1625-1634.
    (XU Jia-lin, ZHU Wei-bing, JU Jin-feng.Supports crushing types in the longwall mining of shallow seams[J]. Journal of China Coal Society, 2014, 39(08): 1625-1634. (in Chinese))
    [14] 付兴玉, 李宏艳, 李凤明, 等. 房式采空区集中煤柱诱发动载矿压机理及防治[J]. 煤炭学报, 2016, 41(6): 1375-1383.
    (FU Yu-xing, LI Hong-yan, LI Feng-ming, et al.Mechanism and prevention of strong strata behaviors induced by the concentration coal pillar of a room mining goaf[J]. Journal of China Coal Society, 2016, 41(6): 1375-1383. (in Chinese))
    [15] 田臣, 刘英杰, 周海丰. 综采工作面回采过上覆集中煤柱及采空区技术[J]. 煤炭科学技术, 2014, 42(8): 125-128.
    (TIAN Chen, LIU Ying-jie, ZHOU Hai-feng.Technology of fully-mechanized coal mining face passing through overburden concentrated coal pillar and goaf[J]. Coal science and Technology, 2014, 42(8): 125-128. (in Chinese))
    [16] 徐敬民, 朱卫兵, 鞠金峰. 浅埋房采区下近距离煤层开采动载矿压机理[J]. 煤炭学报, 2017, 42(2): 500-509.
    (XU Jing-min, ZHU Wei-bing, JU Jin-feng.Mechanism of dynamic mine pressure occurring below adjacent upper chamber mining goaf with shallow cover depth[J]. Journal of China Coal Society, 2017, 42(2): 500-509. (in Chinese))
    [17] 朱卫兵. 浅埋近距离煤层重复采动关键层结构失稳机理研究[D]. 徐州: 中国矿业大学, 2010.
    (ZHU Wei-bing.Study on the instability mechanism of key strata structure in repeat mining of shallow close distance seams[D]. Xuzhou: China University of Mining and Technology, 2010. (in Chinese))
    [18] ZHU W B, XU J M, LI Y C.Mechanism of the dynamic pressure caused by the instability of upper chamber coal pillars in Shendong coalfield, China[J]. Geosciences Journal, 2017, 21(5): 729-741.
    [19] 朱德福, 屠世浩, 王方田, 等. 浅埋房式采空区煤柱群稳定性评价[J]. 煤炭学报, 2018, 43(2): 390-397.
    (ZHU De-fu, TU Shi-hao, WANG Fang-tian, et al.Stability evaluation on pillar system of room and pillar mining in goaf at shallow depth seam[J]. Journal of China Coal Society, 2018, 43(2): 390-397. (in Chinese))
    [20] 刘畅, 刘正和, 张俊文, 等.工作面长度对覆岩空间结构演化及大采高采场矿压规律的影响[J]. 岩土力学, 2018, 39(2): 691-698.
    (LIU Chang, LIU Zheng-he, ZHANG Jun-wen, et al.Effect of mining face length on the evolution of spatial structure of overlying strata and the law of underground pressure in large mining height face[J]. Rock and Soil Mechanics, 2018, 39(2): 691-698. (in Chinese))
    [21] 钱鸣高, 缪协兴. 岩层控制中的关键层理论研究[J]. 煤炭学报, 1996(3): 225-230.
    (QIAN Ming-gao, MIAO Xie-xing.Theoretical study of key stratum in ground control[J]. Journal of China Coal Society, 1996(3): 225-230. (in Chinese))
    [22] 许家林, 朱卫兵, 王晓振, 等. 浅埋煤层覆岩关键层结构分类[J]. 煤炭学报, 2009(7): 865-870.
    (XU Jia-lin, ZHU Wei-bing, WANG Xiao-zhen, et al.Classification of key stratastructure of overlying strata in shallow coal seam[J]. Journal of China Coal Society, 2009(7): 865-870. (in Chinese))
    [23] 王方田, 屠世浩, 李召鑫, 等. 浅埋煤层房式开采遗留煤柱突变失稳机理研究[J]. 采矿与安全工程学报, 2012, 29(6): 770-775.
    (WANG Fang-tian, TU Shi-hao, LI Shao-Xin, et al.Mutation instability mechanism of the room mining residual pillars in the shallow depth seam[J]. Journal of Mining & Safety Engineering, 2012, 29(6): 770-775. (in Chinese))
    [24] 钱鸣高, 张顶立, 黎良杰, 等. 砌体梁的“S—R”稳定及其应用[J]. 矿山压力与顶板管理, 1994(3): 6-11,80. (QIAN Ming-gao, ZHANG Ding-li, LI Liang-jie, et al. “S-R” stability for the voussoir beam and its application[J]. Ground Pressure and Strata Control, 1994(3): 6-11, 80. (in Chinese))
  • 期刊类型引用(29)

    1. 谢志恒,宋向荣,宋相帅,何熊. 新型盾构分散剂评价装置及泥饼分解特性研究. 施工技术(中英文). 2025(02): 148-153 . 百度学术
    2. 刘朝阳,刘雪丹,朱牧原,方勇. 泥岩地层盾构改良渣土流动度评价试验. 铁道建筑. 2025(02): 89-94 . 百度学术
    3. 贾思桢. 基于剪切试验的全风化花岗岩地层泡沫渣土改良研究. 四川建筑. 2024(01): 160-165 . 百度学术
    4. 丁小彬,杨辉泰,施钰. EPB盾构刀盘泥饼成因分析及评价模型构建. 华南理工大学学报(自然科学版). 2024(05): 71-83 . 百度学术
    5. 周志伟,郑文杰,白雪冬,武斌. 黄土黏附特性评价-室内试验和微观响应机制研究. 土木工程学报. 2024(06): 209-220 . 百度学术
    6. 尹义豪,钟小春,何子良,黄思远,何纯豪,高始军,张箭. 考虑压力、温度效应的黏性土黏附强度变化规律研究. 现代隧道技术. 2024(03): 175-183 . 百度学术
    7. 万泽恩,尹威方,李树忱,景少森,王海波,许钦明. 电渗透法降低黏土-金属界面黏附力的机理与试验研究. 岩土工程学报. 2024(08): 1732-1741 . 本站查看
    8. 赵兴,许佳磊,张志强. 上软下硬复合地层盾构渣土改良试验研究. 铁道标准设计. 2024(10): 150-158 . 百度学术
    9. 孟善宝. 黄土地层土压平衡盾构刀盘堵塞风险研究. 铁道建筑技术. 2024(10): 63-66+89 . 百度学术
    10. 杨国华. 软弱地层盾构渣土制备同步注浆浆液及工程应用. 岩土工程技术. 2024(06): 718-724 . 百度学术
    11. QIN ChengJin,WU RuiHong,HUANG GuoQiang,TAO JianFeng,LIU ChengLiang. A novel LSTM-autoencoder and enhanced transformer-based detection method for shield machine cutterhead clogging. Science China(Technological Sciences). 2023(02): 512-527 . 必应学术
    12. 占永杰,王树英,杨秀竹,王海波. 考虑级配影响的盾构泡沫改良粗粒土一维压缩理论计算模型. 岩土工程学报. 2023(08): 1644-1652 . 本站查看
    13. 方勇,王宇博,王凯,钱聚强,陈中天,卓彬. 基于界面黏附力盾构堵塞风险评判方法研究. 岩土工程学报. 2023(09): 1813-1821 . 本站查看
    14. 孙恒,杨擎,黄新淼,李杰华,张赟. 土压平衡盾构出渣温度实时监测系统设计与应用. 隧道建设(中英文). 2023(08): 1396-1403 . 百度学术
    15. 王延辉,周天顺,胡俊山,陈海勇,施成华,彭宇,王祖贤. 高黏性黏土地层大直径泥水盾构掘进姿态失稳及其处理措施. 现代隧道技术. 2023(05): 213-223 . 百度学术
    16. 周双禧. 基于量纲理论的盾构掘进扭矩计算模型. 工业建筑. 2023(S2): 500-502 . 百度学术
    17. 常勇,任国平,髙始军,张箭,梁禹. 高黏性地层大直径泥水盾构刀盘结泥饼问题的处置. 工业建筑. 2023(S2): 596-601+595 . 百度学术
    18. 孙云博,刘磊,李矿矿,崔超. 土压平衡盾构刀盘扭矩影响因素试验研究. 工业建筑. 2023(S2): 889-892 . 百度学术
    19. 季昌,周顺华,姚琦钰,金钰寅,欧阳皖霖. 土压平衡盾构土仓内黏性渣土堵塞的模拟判别与分析. 同济大学学报(自然科学版). 2022(01): 60-69 . 百度学术
    20. 周凯歌,方勇,廖杭,王凯,宋天田. 强风化混合花岗岩地层中盾构泥饼堵塞情况下渣土改良剂效果分析. 隧道建设(中英文). 2022(02): 283-290 . 百度学术
    21. 魏力峰,叶来宾,黄际政,刘鹏程,方勇. 黏性地层盾构刀盘泥饼崩解特性试验研究. 隧道建设(中英文). 2022(02): 275-282 . 百度学术
    22. 杨益,谭超,李兴高. 考虑温度效应的盾构法黏土-金属界面黏附力试验. 土木工程与管理学报. 2022(02): 120-125 . 百度学术
    23. 杨柏超,张超. 某水利工程引水隧洞EPB盾构施工注浆压力与地表沉降关系研究. 黑龙江水利科技. 2022(04): 34-36 . 百度学术
    24. 王文,潘雪瑛,赵延平,颜梦秋,陆地,陈孔磊. 土压平衡盾构刀盘泥饼堵塞改善研究. 土工基础. 2022(03): 304-307 . 百度学术
    25. 朱连臣. 盾构隧道穿越泉域强富水灰岩地质掘进控制技术. 城市轨道交通研究. 2022(09): 160-165 . 百度学术
    26. 马全武,赵凤凯,杨绍玉,杨星,江玉生,刘成龙. 土压平衡盾构黏土改良及其对滚刀影响的试验研究. 市政技术. 2022(11): 18-23+51 . 百度学术
    27. 常嘉,胡耀越,马昊,白学涛,李宗亮. 特殊地质环境下地铁盾构造价异动测算分析. 工程经济. 2021(02): 13-18 . 百度学术
    28. 张伟,赵东平,王卢伟,李栋,王德勇. 砂卵石地层大直径土压平衡盾构选型研究. 现代隧道技术. 2021(S1): 441-450 . 百度学术
    29. 杨武林. 土压平衡盾构施工场地布置方法. 智能城市. 2020(24): 115-116 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数:  195
  • HTML全文浏览量:  6
  • PDF下载量:  111
  • 被引次数: 40
出版历程
  • 收稿日期:  2018-07-19
  • 发布日期:  2019-06-24

目录

    /

    返回文章
    返回