Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑级配影响的盾构泡沫改良粗粒土一维压缩理论计算模型

占永杰, 王树英, 杨秀竹, 王海波

占永杰, 王树英, 杨秀竹, 王海波. 考虑级配影响的盾构泡沫改良粗粒土一维压缩理论计算模型[J]. 岩土工程学报, 2023, 45(8): 1644-1652. DOI: 10.11779/CJGE20220657
引用本文: 占永杰, 王树英, 杨秀竹, 王海波. 考虑级配影响的盾构泡沫改良粗粒土一维压缩理论计算模型[J]. 岩土工程学报, 2023, 45(8): 1644-1652. DOI: 10.11779/CJGE20220657
ZHAN Yongjie, WANG Shuying, YANG Xiuzhu, WANG Haibo. One-dimensional compression theoretical model for shield foam-conditioned coarse-grained soil considering influences of gradation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1644-1652. DOI: 10.11779/CJGE20220657
Citation: ZHAN Yongjie, WANG Shuying, YANG Xiuzhu, WANG Haibo. One-dimensional compression theoretical model for shield foam-conditioned coarse-grained soil considering influences of gradation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1644-1652. DOI: 10.11779/CJGE20220657

考虑级配影响的盾构泡沫改良粗粒土一维压缩理论计算模型  English Version

基金项目: 

国家自然科学基金项目 52022112

详细信息
    作者简介:

    占永杰(1995—),男,硕士研究生,主要从事盾构渣土改良方面的研究工作。E-mail:yjzhan@csu.edu.cn

    通讯作者:

    王树英, E-mail: sywang@csu.edu.cn

  • 中图分类号: TU43

One-dimensional compression theoretical model for shield foam-conditioned coarse-grained soil considering influences of gradation

  • 摘要: 盾构渣土在带压情况下会产生孔隙压力,能一定程度上平衡开挖面前方水压力,降低地下水入渗水平,因此盾构渣土一维压缩计算对指导盾构安全掘进具有重要意义。为此,基于波义耳定律和不连续颗粒堆积理论,建立考虑级配参数和渣土改良参数影响的泡沫改良粗粒土一维不排水压缩作用下孔隙压力计算模型。根据泡沫改良土的变形特征,提出初始压缩模量Es的计算方法,建立泡沫改良土压缩计算模型。进一步地,将泡沫改良土压缩计算模型引入孔压计算模型,提出孔压简便计算模型。为验证一维不排水压缩作用下孔压与压缩计算模型的可靠性,采用自主设计的大型压缩仪对不同级配的泡沫改良粗粒土进行不排水一维压缩试验,获取孔压与压缩实测值。实测值与计算值的对比结果表明,建立的孔压模型和压缩模型能较好的描述不同级配下泡沫改良土的孔压和压缩变化规律,泡沫注入比和土体级配参数均会对泡沫改良土的孔隙压力产生明显影响。
    Abstract: Under the state of chamber pressure, the pore pressure of conditioned soil will be generated, and it can balance the water pressure in front of the excavation to reduce the level of groundwater infiltration. Therefore, one-dimensional compression calculation of conditioned soil is of great significance for guiding the safe excavation of shield. Therefore, based on the Boyer' s law and the discontinuous particle accumulation theory, the model for calculating the undrained pore pressure considering gradation parameters and soil-conditioning parameters is established. According to the deformation characteristics of foam-conditioned soil, the method for the initial compression modulus Es is proposed, and the compression model for the foam-conditioned soil is established. Furthermore, the compression model is introduced into the pore pressure model, and a simple model for the pore pressure is proposed. In order to verify the reliability of the proposed model for the pore pressure and compression, the undrained one-dimensional compression tests on the foam-conditioned coarse-grained soil with different gradations are carried out by using the self-designed large-scale compression devices, and the measured values of pore pressure and compression are obtained. The comparison between the measured and calculated values shows that the pore pressure model and compression model can describe the variation of the pore pressure and compression of foam-conditioned soil under different gradations. The foam injection ratio and gradation have a significant impact on the pore pressure of the foam-conditioned soil.
  • 图  1   试验土样级配曲线

    Figure  1.   Grain-size distribution curves of various soil specimens

    图  2   大型压缩仪

    Figure  2.   Large-scale compression devices

    图  3   压缩曲线计算值与实测值对比图

    Figure  3.   Comparison between calculated and measured values of compression curves

    图  4   孔隙压力计算值与实测值对比图

    Figure  4.   Comparison between calculated and measured values of pore pressure

    图  5   孔隙压力计算值与实测值对比图

    Figure  5.   Comparison between calculated and measured values of pore pressure

    表  1   土样基本物理参数

    Table  1   Basic physical parameters of various soil specimens

    工况 d60/
    mm
    Cc Cu 干密度/
    (g·cm-3)
    最大孔隙比 分类
    1 1.3 1.5 10 1.632 0.809 SF
    2 1.8 1.5 10 1.648 0.820 SW
    3 2.3 1.5 10 1.621 0.877 SW
    4 3.0 1.5 10 1.593 0.858 GW
    5 4.0 1.5 10 1.623 0.854 GW
    6 3.0 0.6 10 1.679 0.784 GP
    7 3.0 2.4 10 1.489 0.908 GW
    8 3.0 3.2 10 1.456 0.952 GP
    9 3.0 4.0 10 1.402 0.990 GP
    10 3.0 1.5 3 1.365 1.033 GP
    11 3.0 1.5 5 1.493 0.917 GW
    12 3.0 1.5 15 1.630 0.761 GW
    13 3.0 1.5 25 1.695 0.737 SW
    下载: 导出CSV

    表  2   发泡及泡沫性能参数

    Table  2   Foaming and performance parameters of foam

    泡沫剂质量浓度/% 泡沫剂
    密度/(g·cm-3)
    发泡压力/
    MPa
    发泡倍率 半衰期/
    min
    3 1.08 0.3 11 16
    下载: 导出CSV

    表  3   不同级配泡沫改良土的初始孔隙比与饱和度

    Table  3   Initial void ratios and saturations of foam-conditioned soils with different gradations

    Cc=1.5, Cu=10 d60=3 mm, Cu=10 d60=3 mm, Cc=1.5
    d60/mm e0 Sr Cc e0 Sr Cu e0 Sr
    1.3 0.935 0.2853 0.6 0.985 0.2683 3 1.488 0.1785
    1.8 1.027 0.2589 1.5 1.136 0.2340 5 1.251 0.2123
    2.3 1.095 0.2429 2.4 1.219 0.2182 10 1.136 0.2340
    3.0 1.136 0.2340 3.2 1.282 0.2074 15 1.006 0.2644
    4.0 1.289 0.2061 4.0 1.383 0.1923 25 0.905 0.2938
    下载: 导出CSV

    表  4   不同级配试样粒度分布宽度

    Table  4   Grain-size distribution widths of specimens with different gradations

    Cc=1.5, Cu=10 d60=3 mm, Cu=10 d60=3 mm, Cc=1.5
    d60/mm m Cc m Cu m
    1.3 1.139 0.6 1.328 3 1.036
    1.8 1.188 1.5 1.244 5 1.153
    2.3 1.218 2.4 1.492 10 1.244
    3.0 1.244 3.2 1.579 15 1.291
    4.0 1.296 4.0 1.594 25 1.297
    下载: 导出CSV

    表  5   不同竖向压力作用下泡沫改良土体积变形量∆V

    Table  5   Volume deformations of foam-conditioned soils under different vertical pressures

    轴压/
    kPa
    Cc=1.5, Cu=10 d60=3 mm, Cu=10 d60=3 mm, Cc=1.5
    d60/mm Cc Cu
    1.3 1.8 2.3 3 4 0.6 1.5 2.4 3.2 4 3 5 10 15 25
    50 32.6 30.7 28.4 25.6 32.6 25.2 25.6 29.1 28.1 29.1 31.6 31.9 25.6 25.5 24.6
    100 47.9 44.5 40.5 36.2 47.9 34.2 36.2 41.1 40.0 41.0 45.4 46.0 36.2 35.5 34.8
    200 58.2 54.5 49.3 43.4 58.2 41.0 43.4 49.7 48.2 49.6 54.4 57.7 43.4 42.4 41.5
    下载: 导出CSV
  • [1] 方勇, 王凯, 陶力铭, 等. 黏性地层面板式土压平衡盾构刀盘泥饼堵塞试验研究[J]. 岩土工程学报, 2020, 42(9): 1651-1658. doi: 10.11779/CJGE202009009

    FANG Yong, WANG Kai, TAO Liming, et al. Experimental study on clogging of cutterhead for panel earth-pressure-balance shield tunneling in cohesive strata[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1651-1658. (in Chinese) doi: 10.11779/CJGE202009009

    [2] 徐征杰, 郭晓阳. 基于响应面法的盾构施工膨润土改良参数优化[J]. 岩土工程学报, 2021, 43(1): 194-200. doi: 10.11779/CJGE202101023

    XU Zhengjie, GUO Xiaoyang. Optimization of bentonite parameters for shield tunneling based on response surface method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 194-200. (in Chinese) doi: 10.11779/CJGE202101023

    [3] 黄硕. 盾构泡沫改良粗颗粒渣土渗流时变性及其理论预测方法研究[D]. 长沙: 中南大学, 2020: 34-36.

    HUANG Shuo. Research on Time Variation and Theoretical Prediction Method of Permeation Characteristics for Foam-conditioned Coarse-grained Soil in EPB Shield Tunneling[D]. Changsha: Central South University, 2020: 34-36. (in Chinese)

    [4] 王树英, 刘朋飞, 胡钦鑫, 等. 盾构隧道渣土改良理论与技术研究综述[J]. 中国公路学报, 2020, 33(5): 8-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202005002.htm

    WANG Shuying, LIU Pengfei, HU Qinxin, et al. State-of-the-art on theories and technologies of soil conditioning for shield tunneling[J]. China Journal of Highway and Transport, 2020, 33(5): 8-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202005002.htm

    [5] 贺少辉, 张淑朝, 李承辉, 等. 砂卵石地层高水压条件下盾构掘进喷涌控制研究[J]. 岩土工程学报, 2017, 39(9): 1583-1590. doi: 10.11779/CJGE201709005

    HE Shaohui, ZHANG Shuchao, LI Chenghui, et al. Blowout control during EPB shield tunnelling in sandy pebble stratum with high groundwater pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1583-1590. (in Chinese) doi: 10.11779/CJGE201709005

    [6]

    HUANG S, WANG S Y, XU C J, et al. Effect of grain gradation on the permeability characteristics of coarse-grained soil conditioned with foam for EPB shield tunneling[J]. KSCE Journal of Civil Engineering, 2019, 23(11): 4662-4674. doi: 10.1007/s12205-019-0717-7

    [7]

    WANG H B, WANG S Y, ZHONG J Z, et al, 2021. Undrained compressibility characteristics and pore pressure calculation model of foam-conditioned sand[J]. Tunnelling and Underground Space Technology, 118: 104161.

    [8]

    SILLS G C, WHEELER S J, THOMAS S D, et al. Behaviour of offshore soils containing gas bubbles[J]. Géotechnique, 1991, 41(2): 227-241. doi: 10.1680/geot.1991.41.2.227

    [9] HUARES B, RICO R. Mecanica de Suelos[M]. 3rded. Mexico: LIMUSA, 1980: 456-466.

    HUARES B, RICO R. Soil Mechanics[M]. 3rded. Mexico: LIMUSA, 1980: 456-466. (in Spanish)

    [10] 林成功, 吴德伦. 非饱和黏土孔隙压力计算与实验研究[J]. 岩土工程学报, 2002, 24(5): 605-607. http://www.cgejournal.com/cn/article/id/11045

    LIN Chenggong, WU Delun. Pore-pressure theory and experimental research for non-saturated clay[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(5): 605-607. (in Chinese) http://www.cgejournal.com/cn/article/id/11045

    [11]

    HU Q X, WANG S Y, QU T M, et al. Effect of hydraulic gradient on the permeability characteristics of foam-conditioned sand for mechanized tunnelling[J]. Tunnelling and Underground Space Technology, 2020, 99: 103377.

    [12]

    LING F L, WANG S Y, HU Q X, et al. Effect of bentonite slurry on the function of foam for changing the permeability characteristics of sand under high hydraulic gradients[J]. Canadian Geotechnical Journal, 2022, 59(7): 1061-1070.

    [13]

    DANG T S, MESCHKE G. Influence of muck properties and chamber design on pressure distribution in EPB pressure chambers–Insights from computational flow simulations[J]. Tunnelling and Underground Space Technology, 2020, 99: 103333.

    [14] 李一凡, 王俊刚, 徐仁宇, 等. 砂土孔隙压力影响因素的试验研究[J]. 山东理工大学学报(自然科学版), 2021, 35(4): 50-55.

    LI Yifan, WANG Jungang, XU Renyu, et al. Experimental study on factors affecting pore pressure of sand[J]. Journal of Shandong University of Technology (Natural Science Edition), 2021, 35(4): 50-55. (in Chinese)

    [15] 陈正汉, 郭楠. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学, 2019, 40(1): 1-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901002.htm

    CHEN Zhenghan, GUO Nan. New developments of mechanics and application for unsaturated soils and special soils[J]. Rock and Soil Mechanics, 2019, 40(1): 1-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901002.htm

    [16] 刘兴荣, 崔鹏, 王飞, 等. 不同粒径级配条件下工程弃渣泥石流启动机理研究[J]. 工程地质学报, 2018, 26(6): 1593-1599. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806021.htm

    LIU Xingrong, CUI Peng, WANG Fei, et al. Study on the threshold motion mechanism of engineering slag debris flow with different particle size grading conditions[J]. Journal of Engineering Geology, 2018, 26(6): 1593-1599. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806021.htm

    [17]

    FURNAS C C. Stock distribution and gas-solid contact in the blast furnace[J]. Bureau of Mines Reports of Investigation, 1928: 8-18.

    [18]

    CUBRINOVSKI M, ISHIHARA K. Maximum and minimum void ratio characteristics of sands[J]. Soils and Foundations, 2002, 42(6): 65-78.

    [19] 张世文, 张立平, 袁君, 等. 基于分形理论和地质统计学的表层土壤颗粒大小分布变化特征[J]. 中国农业科学, 2014, 47(13): 2591-2601. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201413011.htm

    ZHANG Shiwen, ZHANG Liping, YUAN Jun, et al. Characterizing variation of topsoil particle size distribution based on fractal theory and geostatistics[J]. Scientia Agricultura Sinica, 2014, 47(13): 2591-2601. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201413011.htm

    [20] 张程林. 级配颗粒堆积体密度估算方法研究[D]. 广州: 华南理工大学, 2013.

    ZHANG Chenglin. Study on the Calculation Method of Graded Granular Particle Packing Density[D]. Guangzhou: South China University of Technology, 2013. (in Chinese)

    [21] 白雪梅, 赵松山. 浅谈算术平均数的作用[J]. 浙江统计, 2000(11): 12-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJTJ200011005.htm

    BAI Xuemei, ZHAO Songshan. On the function of arithmetic average[J]. Zhe Jiang Statistics, 2000(11): 12-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZJTJ200011005.htm

    [22] 杨光华. 现代地基设计理论的创新与发展[J]. 岩土工程学报, 2021, 43(1): 1-18. doi: 10.11779/CJGE202101001

    YANG Guanghua. Innovation and development of modern theories for foundation design[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 1-18. (in Chinese) doi: 10.11779/CJGE202101001

    [23] 彭长学, 杨光华. 软土e-p曲线确定的简化方法及在非线性沉降计算中的应用[J]. 岩土力学, 2008, 29(6): 1706-1710. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200806059.htm

    PENG Changxue, YANG Guanghua. A simplified method for determining e-p curve of soft soil and its application to analyzing nonlinear settlement of foundation[J]. Rock and Soil Mechanics, 2008, 29(6): 1706-1710. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200806059.htm

    [24] 曹文贵, 李鹏, 张超, 等. 土的初始和再压缩曲线分析模型[J]. 岩石力学与工程学报, 2015, 34(1): 166-173. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501018.htm

    CAO Wengui, LI Peng, ZHANG Chao, et al. Analysis models of initial compression and recompression curves of soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 166-173. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501018.htm

    [25]

    BEZUIJEN A, SCHAMINEE P, KLEINJAN J A. Additive testing for earth pressure balance shields[C]// Geotechnical Engineering for Transportation Infrastructure: Theory and Practice, Planning and Design, Construction and Maintenance Vol. 3. Delft Geotechnics, Delft, Netherlands, 1999: 1-12.

    [26]

    MORI L S, MOONEY M, CHA M S. Characterizing the influence of stress on foam conditioned sand for EPB tunneling[J]. Tunnelling and Underground Space Technology, 2018, 71: 454-465.

    [27] 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

    [28]

    PSOMAS S. Properties of Foam/Sand Mixtures for Tunnelling Applications[D]. Oxford: University of Oxford, 2001.

    [29]

    PEÑA D M Á. Foam as a Soil Conditioner in Tunnelling: Physical and Mechanical Properties of Conditioned Sands[D]. Oxford: University of Oxford, 2007.

    [30] 岩土工程仪器基本参数及通用技术条件: GB/T 15406—2007[S]. 北京: 中国标准出版社, 2007.

    Primary Parameter and General Specification for Geotechnical Engineering Instrument: GB/T 15406—2007[S]. Beijing: Standards Press of China, 2007. (in Chinese)

    [31]

    WU Y L, NAZEM A, MENG F Y, et al. Experimental study on the stability of foam-conditioned sand under pressure in the EPBM chamber[J]. Tunnelling and Underground Space Technology, 2020, 106: 103590.

    [32] 宗睿, 徐飞鹏, 贾瑞卿, 等. 一种土壤水分传感器性能测试的方法及应用[J]. 灌溉排水学报, 2013, 32(1): 74-76. https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201301017.htm

    ZONG Rui, XU Feipeng, JIA Ruiqing, et al. A test method of soil moisture sensor[J]. Journal of Irrigation and Drainage, 2013, 32(1): 74-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201301017.htm

图(5)  /  表(5)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-19
  • 网络出版日期:  2023-02-23

目录

    /

    返回文章
    返回