Risk evaluation method for shield clogging based on interface adhesion force
-
摘要: 为了准确预测盾构在高黏粒地层掘进时刀盘堵塞风险、提供刀盘泥饼防治依据,自行设计土体-金属界面拉拔试验装置与界面直剪试验装置,通过室内试验,分析了不同土样在不同稠度指数下法向黏附力与切向黏附力变化规律;基于试验结果提出了针对黏附力的五等级盾构堵塞风险分区图,并应用于强风化混合花岗岩渣土改良效果评估。研究表明:法向黏附力随稠度指数的增大先升高再降低,蒙脱土含量的提高会降低法向黏附力峰值线的稠度指数;全样品的摩擦角和切向黏附力在稠度指数小于0.6后稳定在低水平;稠度指数大于0.6时,纯黏土土样切向黏附力随着稠度指数的增加而增加,含砂土样切向附着力在稠度指数0.9附近有峰值,随后降低;针对黏附力盾构堵塞风险分区图可反映渣土改良过程中的盾构堵塞风险变化的路径,可对渣土改良效果进行评估。Abstract: In order to accurately predict the risk of cutterhead clogging and provide the basis for preventing and controlling cutterhead mud cake in the tunneling of high clay stratum, the laboratory tests are conducted by using the self-designed soil-metal interface pull-out test device and the improved direct shear test device. The variation rules of the normal and tangential adhesion forces of different soil samples under different consistency indexes are analyzed through the laboratory tests. Based on the test results, a five-grade shield clogging risk zone map for adhesion force is proposed and used to evaluate the conditioning effects of the strongly weathered mixed granite residue. The results show that the normal adhesion first increases and then decreases with the increase of the consistency index, and the increase of the montmorillonite content decreases the peak line consistency index of the normal adhesion. The friction angle and tangential adhesion of the whole samples remain at a low level when the consistency index is less than 0.6. When the consistency index is greater than 0.6, the tangential adhesion of the pure clay sample increases with the increase of the consistency index, and the tangential adhesion of the sandy soil sample has a peak value near the consistency index of 0.9, and then decreases. The shield clogging risk zone map for adhesion force can reflect the path of the change of shield clogging risk in the process of soil conditioning, and the effects of soil conditioning can be evaluated.
-
Keywords:
- shield tunnel /
- clogging risk /
- laboratory test /
- soil conditioning /
- normal adhesion /
- tangential adhesion
-
-
表 1 试验土样参数
Table 1 Parameters of test soil samples
土样名称 塑限/% 液限/% 高岭土 23.90 46.17 蒙脱土 58.99 180.00 高蒙混合土(80%高+20%蒙) 41.13 106.90 砂黏混合土(75%混+25%砂) 30.33 83.96 砂黏混合土(50%混+50%砂) 26.43 65.43 砂黏混合土(25%混+75%砂) 19.42 46.00 强风化混合花岗岩 21.67 38.25 -
[1] 竺维彬, 鞠世健, 张弥, 等. 广州地铁二号线旧盾构穿越珠江的工程难题及对策[J]. 土木工程学报, 2004, 37(1): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200401009.htm ZHU Weibin, JU Shijian, ZHANG Mi, et al. On the engineering poser and countermeasures of driving and crossing the Pearl River with two used tbms in Guangzhou metro line of no. 2[J]. China Civil Engineering Journal, 2004, 37(1): 56-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200401009.htm
[2] 方勇, 王凯, 陶力铭, 等. 黏性地层面板式土压平衡盾构刀盘泥饼堵塞试验研究[J]. 岩土工程学报, 2020, 42(9): 1651-1658. doi: 10.11779/CJGE202009009 FANG Yong, WANG Kai, TAO Liming, et al. Experimental study on clogging of cutterhead for panel earth-pressure-balance shield tunneling in cohesive strata[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1651-1658. (in Chinese) doi: 10.11779/CJGE202009009
[3] 张庆建. 饱和黏土地基中黏附强度试验研究[D]. 天津: 天津大学, 2014. ZHANG Qingjian. Research on Adhesion in Satursted Clay Soils[D]. Tianjin: Tianjin University, 2014. (in Chinese)
[4] 杨益, 朱文骏, 李兴高, 等. 老黏土地层土压盾构刀盘堵塞渣土改良效果评价方法[J]. 北京交通大学学报, 2019, 43(6): 43-49, 61. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201906006.htm YANG Yi, ZHU Wenjun, LI Xinggao, et al. Evaluation method for muck conditioning of hard clay to prevent clogging in EPB tunnelling[J]. Journal of Beijing Jiaotong University, 2019, 43(6): 43-49, 61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201906006.htm
[5] 刘成, 黄琳, 肖宇豪, 等. 土体含水率和金属波纹状表面对界面黏附力影响[J]. 林业工程学报, 2021, 6(3): 161-165. https://www.cnki.com.cn/Article/CJFDTOTAL-LKKF202103026.htm LIU Cheng, HUANG Lin, XIAO Yuhao, et al. Experimental study on the influence of soil moisture content and metal corrugated surface on the interfacial adhesion[J]. Journal of Forestry Engineering, 2021, 6(3): 161-165. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LKKF202103026.htm
[6] 肖宇豪, 刘成, 黄琳, 等. 电渗法降低黏性土黏附力室内试验[J]. 林业工程学报, 2020, 5(4): 168-173. https://www.cnki.com.cn/Article/CJFDTOTAL-LKKF202004024.htm XIAO Yuhao, LIU Cheng, HUANG Lin, et al. Laboratory tests on adhesion reduction of clay soil by electro⁃osmosis method[J]. Journal of Forestry Engineering, 2020, 5(4): 168-173. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LKKF202004024.htm
[7] FEINENDEGEN M, ZIEGLER M, SPAGNOLI G, et al. A new laboratory test to evaluate the problem of clogging in mechanical tunnel driving with EPB-shields[C]// ISRM EUROCK. Lausanne, Switzerland: ISRM, 2010.
[8] SPAGNOLIG. Electro-chemo-mechanical Manipulations of Clats Regarding the Clogging During EPB-tunnel Driving [D]. Aachen: RWTH Aachen University, 2011.
[9] BASMENJ A K, GHAFOORI M, CHESHOMI A, et al. Adhesion of clay to metal surface: normal and tangential measurement[J]. Geomechanics and Engineering, 2016, 10(2): 125-135.
[10] SASS I, BURBAUM U. A method for assessing adhesion of clays to tunneling machines[J]. Bulletin of Engineering Geology and the Environment, 2009, 68(1): 27-34.
[11] ZUMSTEG R, PUZRIN A M. Stickiness and adhesion of conditioned clay pastes[J]. Tunnelling and Underground Space Technology, 2012, 31: 86-96.
[12] LIU P F, WANG S Y, SHI Y F, et al. Tangential adhesion strength between clay and steel for various soil softnesses[J]. Journal of Material in Civil Engineering, 2019, 31(5): 0401948.
[13] WANG S Y, LIU P F, HU Q X, et al. Effect of dispersant on the tangential adhesion strength between clay and metal for EPB shield tunnelling[J]. Tunnelling and Underground Space Technology, 2020, 95: 103144.
[14] ZIMNIK A R, BAALEN L R V, VERHOEF P N W, et al. The adherence of clay to steel surfaces[C]// ISRM International Symposium. Melbourne, Australia: ISRM, 2000.
[15] BASMENJ A K, GHAFOORI M, CHESHOMI A, et al. Adhesion of clay to metal surface; Normal and tangential measurement[J]. Geomechanics and Engineering, 2016, 10(2): 125-135.
[16] 袁大军, 毛家骅, 王将, 等. 软岩地层泥水盾构掘进刀盘堵塞现象研究[J]. 中国公路学报, 2022, 35(4): 177-185. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202204014.htm YUAN Dajun, MAO Jiahua, WANG Jiang, et al. Study on clogging phenomenon on cutterhead of slurry shield machine tunneling under soft rock[J]. China Journal of Highway and Transport, 2022, 35(4): 177-185. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202204014.htm
[17] CHEN Z T, BEZUIJEN A, FANG Y, et al. Experimental study and field validation on soil clogging of EPB shields in completely decomposed granite[J]. Tunnelling and Underground Space Technology, 2022, 120: 104300.
[18] SPA G. Review of alternative construction methods and feasibility of proposed methods for constructing Attiko Metro Extension of Line 3 to Egaleo Attiko Metro S. A[Z]. Greece: 1995.
[19] THEWES M, BURGER W. Clogging risks for TBM drives in clay[J]. Tunnels & Tunnelling International. 2005, 36(6): 28-31.
[20] HOLLMANN F S, THEWES M. Assessment method for clay clogging and disintegration of fines in mechanised tunnelling[J]. Tunnelling and Underground Space Technology, 2013, 37: 96-106.
[21] THEWES M, HOLLMANN F. Assessment of clay soils and clay-rich rock for clogging of TBMs[J]. Tunnelling and Underground Space Technology, 2016, 57: 122-128.
[22] KHABBAZI A, GHAFOORI M, AZALI S T, et al. Experimental and laboratory assessment of clogging potential based on adhesion[J]. Bulletin of Engineering Geology and the Environment, 2019, 78: 605-616.
[23] FOUNTAINE E R. Investigations into the mechanism of soil adhesion[J]. Journal of Soil Science, 1954, 5(2): 251-263.
[24] 王凯. 盾构泥饼堵塞风险综合评判方法及防治措施研究[D]. 成都: 西南交通大学, 2021. WANG Kai. Research on Comprehensive Evaluation Method for the Risk of Clay Clogging and Prevention Measures[D]. Chengdu: Southwest Jiaotong University, 2021. (in Chinese)
[25] 陶力铭. 盾构刀盘-土壤界面黏附机理试验研究[D]. 成都: 西南交通大学, 2020. TAO Liming. Experimental Study on the Adhesion Mechanism of Shield Cutterhead-Soil Interface[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
[26] 竺维彬, 鞠世健. 盾构施工泥饼(次生岩块)的成因及对策[J]. 地下工程与隧道, 2003(2): 25-29, 48. https://www.cnki.com.cn/Article/CJFDTOTAL-DSGC200302005.htm ZHU Weibin, JU Shijian. Causes and Countermeasures of mud cake (secondary rock block) in shield construction[J]. Underground Engineering and Tunnels, 2003(2): 25-29, 48 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DSGC200302005.htm
[27] 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019. Standard for Geotechnical Test Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
[28] 王树英, 刘朋飞, 胡钦鑫, 等. 盾构隧道渣土改良理论与技术研究综述[J]. 中国公路学报, 2020, 33(5): 8-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202005002.htm WANG Shuying, LIU Pengfei, HU Qinxin, et al. State-of-the-art on theories and technologies of soil conditioning for shield tunneling[J]. China Journal of Highway and Transport, 2020, 33(5): 8-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202005002.htm
[29] 刘朋飞, 王树英, 阳军生, 等. 渣土改良剂对黏土液塑限影响及机理分析[J]. 哈尔滨工业大学学报, 2018, 50(6): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201806013.htm LIU Pengfei, WANG Shuying, YANG Junsheng, et al. Effect of soil conditioner on Atterberg limits of clays and its mechanism[J]. Journal of Harbin Institute of Technology, 2018, 50(6): 91-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201806013.htm
-
其他相关附件