本文全文图片
本文全文表格
-
工况 加载频率f/Hz 初始有效围压σ'c/kPa 循环应力比CSR T1 1 50 0.18 T2 1 100 0.15 T3 1 100 0.18 T4 1 100 0.21 T5 1 150 0.18 T6 1 150 0.21 -
试验编号 砂土名称 f/Hz Dr% CSR CTX_T2 Ticino sand 0.010 37.8 0.255 CTX_LB3 Leighton Buzzard sand 0.010 54.4 0.128 S_SA10 Sant' Agostino sand 0.008 73.0 0.164 -
方程 Cross触变性流体模型[15] TEPP模型[16] MTEPP模型(本文提出) 状态方程 $ \tau = ({\eta _\infty } + a\lambda ) \cdot \dot \gamma $ $ \tau = [{\eta _\infty } + ({\eta _0} - {\eta _\infty }) \cdot (1 - {r_{\text{u}}})]\dot \gamma $ $ \tau = {\eta _0}{\text{e}^{ - {\text{e}^{\left[ { - k\left( {\left( {1 - {r_{\text{u}}}} \right) - \left( {1 - {r_{{\text{u,c}}}}} \right)} \right)} \right]}}}} \cdot \dot \gamma $ 速率方程 $ {\text{d}}\lambda /{\text{d}}t = b(1 - \lambda ) - c\lambda {\dot \gamma ^n} $ $ {\text{d}}(1 - {r_{\text{u}}})/{\text{d}}t = - c(1 - {r_{\text{u}}})\dot \gamma $ $ \text{d}(1-{r}_{\text{u}})/\text{d}t=-c(1-{r}_{\text{u}})\dot{\gamma }\text{ }\left(c=\left\{\begin{array}{c}{c}_{1}(\text{stage1})\text{ }\\ {c}_{2}(\text{stage2})\text{ }\\ {c}_{3}(\text{stage3})\text{ }\end{array}\right.\right) $ 表观黏度 $ \eta {\text{ = }}{\eta _\infty } + a\lambda $ $ \eta {\text{ = }}{\eta _\infty } + ({\eta _0} - {\eta _\infty })(1 - {r_{\text{u}}}) $ $ \eta {\text{ = }}{\eta _0}{\text{e}^{ - {\text{e}^{\left[ { - k\left( {\left( {1 - {r_{\text{u}}}} \right) - \left( {1 - {r_{{\text{u,c}}}}} \right)} \right)} \right]}}}} $ -
工况 ${\sigma '_{\text{c}}}$/kPa CSR 拟合参数 c1 c2 c3 k ru, c η0/(kPa·s) T1 50 0.18 17 18.3 9.2 5.29 0.68 1812.68 T2 100 0.15 3.1 5.3 4.9 5.58 0.73 3543.70 T3 100 0.18 3.9 4.2 3.8 3.45 0.57 3117.99 T4 100 0.21 10.0 11.0 5.5 4.61 0.63 2767.69 T5 150 0.18 2.9 6.3 5.9 6.11 0.70 5287.53 T6 150 0.21 3.2 5.1 4.2 6.60 0.73 3295.47