PDF format
01-202308-G22-0531一文审稿意见与作者答复 Download(524KB)01-202308-G22-0531一文审稿意见与作者答复
Figures of the Article
-
Distribution of landslides and disasters induced by Haiyuan Ms 8.5 earthquake in 1920 (Upton Close, 1922, clearly drawn by the authors)
-
Large-scale loess landslides induced by Haiyuan MS 8.5 earthquake in 1920
-
Schematic diagram of shear loess landslide
-
Shear landslide within loess strata at Sunjiagou in Jingning county induced by Haiyuan MS 8.5 earthquake
-
Schematic diagram of liquefied loess landslide
-
Liquefaction-triggered loess landslide at Shibeiyuan during Haiyuan MS 8.5 earthquake in 1920[15]
-
Mud flow and landslide at west Yongguang village induced by liquefaction in both bottom and surface layers during the Minxian-Zhangxian MS 6.6 earthquake in 2013
-
Schematic diagram of seismic subsidence type landslide
-
Seismic subsidence-triggered loess landslides
-
Macroscopic failure characteristics of shear landslidebased on shaking table tests
-
Shaking table test model and layout of sensors for loess-bedrock interface shear landslide
-
Acceleration amplification effects of shear landslide on loess-bedrock interface at different locations
-
Soil pressure distribution of loess-bedrock interface and overlying loess during shear landslide failure
-
Macroscopic failure characteristics of loess-bedrock shear landslide based on shaking table tests
-
Shaking-table test model for liquefaction at bottom-triggered sliding of loess deposit and layout of sensors
-
Increasing trend of pore water pressure in saturated soil of liquefaction loess landslide base on shaking table tests
-
Failure characteristics of liquefaction at bottom-triggered sliding of loess deposit
-
Sizes of shaking-table test model and layout of sensors for surface liquefaction-triggered sliding flow of loess slope
-
Macroscopic failure characteristics of liquefaction- triggered mud flow of loess slope with saturated surface based on shaking table tests
-
Dramatic increase of pore water pressures at different locations from slope foot to slope crest
-
Shaking-table test model and layout of sensors for loess landslides due to seismic subsidence
-
Macroscopic failure characteristics of seismic subsidence- triggered loess landslide in shaking table tests
-
Seismic subsidence-triggered deformation and instability process of loess slope based on strain observation
Tables of the Article
-
地震名称 震级 震中烈度 断裂性质 遇难人数 地震岩土灾害 1303年洪洞地震 8.0 Ⅺ 右旋走滑 20万 滑坡、液化滑移 1556年华县地震 $ 8\frac{1}{4} $ Ⅺ 正断 83万 密集滑坡、震陷 1654年天水南地震 8.0 Ⅺ 左旋走滑兼正断 3.1万 密集滑坡 1695年临汾地震 $ 7\frac{3}{4} $ Ⅹ 正断 5.3万 滑坡、液化滑移 1718年通渭地震 7.5 Ⅹ 逆冲 4万 密集滑坡 1879年武都地震 8.0 XI 逆冲兼右旋走滑 2.2万 滑坡、崩塌 1920年海原地震 8.5 Ⅻ 左旋走滑 27万 密集滑坡、液化滑移 1927年古浪地震 8.0 Ⅺ 西段逆冲,东段正断 4万 密集滑坡 2013年岷—漳地震 6.6 Ⅷ 逆冲为主,兼具左旋走滑 12 滑坡、液化泥流 -
地层土样 取样深度/m 干密度/(g·cm-3) 含水率w/% 孔隙比 饱和度Sr /% 颗粒组成/% 黏粒 粉粒 砂粒 上部非饱和黄土层(Q3、Q4) 6.5 1.35 5.51 1.12 13.36 13.15 77.99 8.86 第一古土壤层(Q3) 13.5 1.68 11.14 0.79 38.08 16.97 81.01 2.02 饱和砂质黄土层(Q3) 16.5 1.65 27.69 1.09 75.40 12.20 59.66 28.14 第二古土壤层(Q2) 35.5 1.72 26.82 1.00 72.82 13.22 66.21 20.57