• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
SUN Yifei, WANG Le, ZHANG Tingran, ZHANG Chunhui, TIAN Yinghui. Experimental study on bearing capacity of plate anchor in clay under repeated loading[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 659-666. DOI: 10.11779/CJGE20230359
Citation: SUN Yifei, WANG Le, ZHANG Tingran, ZHANG Chunhui, TIAN Yinghui. Experimental study on bearing capacity of plate anchor in clay under repeated loading[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 659-666. DOI: 10.11779/CJGE20230359

Experimental study on bearing capacity of plate anchor in clay under repeated loading

More Information
  • Received Date: April 23, 2023
  • Available Online: October 11, 2024
  • Floating structure is an important structure form in the development of far-reaching Marine resources. The anchor foundation connected with it by anchor chain is the key part to ensure its security and stability in place. Plate anchor is one of the common anchorage foundation forms at present, and it will be subjected to the repeated loading induced by wind, wave and current during its service. At present, the research conclusions on the bearing performance of plate anchors under repeated loading is inconsistent, and the bearing mechanism is not clear, which needs to be further carried out in-depth and systematic research. In this paper, a two-degree-of-freedom servo loading system was used to carry out a reciprocating drawing experiment on a plate anchor in saturated clay, and the influence of the median and amplitude of repeated loading on the bearing performance of plate anchor was studied. The results show that with the increase of median and amplitude of repeated loading, the bearing capacity of plate anchor first increases and then decreases. When the median and amplitude of repeated loading is 28%±18% of the monotonic ultimate pulling capacity, the bearing capacity of plate anchor increases the most, which is 10.44% higher than that of monotonic ultimate pulling capacity. When the repeated loading is 60%±18% of the monotonic ultimate pulling capacity, the soil mass is seriously damaged and the plate anchor loses its bearing capacity. According to the change of bearing capacity of plate anchor after repeated loading, it provides guidance for the safety evaluation of plate anchor during service.
  • [1]
    王栋, 胡玉霞, 宋振河. 均质黏土中圆形平板锚的抗拉承载力分析[J]. 岩土力学, 2007, 28(6): 1242-1246. doi: 10.3969/j.issn.1000-7598.2007.06.034

    (WANG Dong, HU Yuxia, SONG Zhenhe. Analysis of uplift capacity of circular plate anchors in uniform clay[J]. Rock and Soil Mechanics, 2007, 28(6): 1242-1246 doi: 10.3969/j.issn.1000-7598.2007.06.034
    [2]
    DAS B M. Model tests for uplift capacity of foundations in clay[J]. Soils and Foundations, 1978, 18(2): 17-24. doi: 10.3208/sandf1972.18.2_17
    [3]
    DAS B M, SHIN E C, DASS R N, et al. Suction force below plate anchors in soft clay[J]. Marine Georesources & Geotechnology, 1994, 12(1): 71-81.
    [4]
    DAS B M. Behavior of a shallow plate anchor in clay under sustained loading[J]. Marine Georesources & Geotechnology, 1995, 13(4): 417-428.
    [5]
    GAUDIN C, O'LOUGHLIN C D, RANDOLPH M F, et al. Influence of the installation process on the performance of suction embedded plate anchors[J]. Géotechnique, 2006, 56(6): 381-391. doi: 10.1680/geot.2006.56.6.381
    [6]
    O'LOUGHLIN C D, BLAKE A P, RICHARDSON M D, et al. Installation and capacity of dynamically embedded plate anchors as assessed through centrifuge tests[J]. Ocean Engineering, 2014, 88: 204-213. doi: 10.1016/j.oceaneng.2014.06.020
    [7]
    ROWE R K, DAVIS E H. The behaviour of anchor plates in clay[J]. Géotechnique, 1982, 32(1): 9-23. doi: 10.1680/geot.1982.32.1.9
    [8]
    MERIFIELD R S, SLOAN S W, YU H S. Stability of plate anchors in undrained clay[J]. Géotechnique, 2001, 51(2): 141-153. doi: 10.1680/geot.2001.51.2.141
    [9]
    MERIFIELD R S, LYAMIN A V, SLOAN S W, et al. Three-dimensional lower bound solutions for stability of plate anchors in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(3): 243-253. doi: 10.1061/(ASCE)1090-0241(2003)129:3(243)
    [10]
    SONG Z H, HU Y X, RANDOLPH M F. Numerical simulation of vertical pullout of plate anchors in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(6): 866-875. doi: 10.1061/(ASCE)1090-0241(2008)134:6(866)
    [11]
    WANG D, HU Y X, RANDOLPH M F. Three-dimensional large deformation finite-element analysis of plate anchors in uniform clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(2): 355-365. doi: 10.1061/(ASCE)GT.1943-5606.0000210
    [12]
    于龙, 刘君, 孔宪京. 锚板在正常固结黏土中的承载力[J]. 岩土力学, 2007, 28(7): 1427-1434. doi: 10.3969/j.issn.1000-7598.2007.07.027

    YU Long, LIU Jun, KONG Xianjing. Stability of plate anchors in NC clay[J]. Rock and Soil Mechanics, 2007, 28(7): 1427-1434. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.07.027
    [13]
    PONNIAH D A, FINLAY T W. Cyclic behaviour of plate anchors[J]. Canadian Geotechnical Journal, 1988, 25(2): 374-381. doi: 10.1139/t88-038
    [14]
    YU L, ZHOU Q, LIU J. Experimental study on the stability of plate anchors in clay under cyclic loading[J]. Theoretical and Applied Mechanics Letters, 2015, 5(2): 93-96. doi: 10.1016/j.taml.2015.02.005
    [15]
    SINGH S P, RAMASWAMY S V. Effect of shape on holding capacity of plate anchors buried in soft soil[J]. Geomechanics and Geoengineering, 2008, 3(2): 145-154. doi: 10.1080/17486020802126875
    [16]
    SINGH S P, RAMASWAMY S V. Effects of cyclic frequency and pre-loading on behaviour of plate anchors[C]// Deep Foundations and Geotechnical In Situ Testing, Shanghai, China. Reston, VA: American Society of Civil Engineers, 2010(205): 252-260.
    [17]
    ZHOU Z F, O'LOUGHLIN C D, WHITE D J, et al. Improvements in plate anchor capacity due to cyclic and maintained loads combined with consolidation[J]. Géotechnique, 2020, 70(8): 732-749. doi: 10.1680/jgeot.19.TI.028
    [18]
    CHEN J F. Centrifuge Model Study on Pull-out Behaviour of Suction Embedded Plate Anchor[D]. Singapore: Department of Civil and Environmental Engineering, Nation University of Singapore, 2017.
    [19]
    HOUSE A R, OLIVEIRA J R M S, RANDOLPH M F. Evaluating the coefficient of consolidation using penetration tests[J]. International Journal of Physical Modelling in Geotechnics, 2001, 1(3): 17-26. doi: 10.1680/ijpmg.2001.010302
    [20]
    STEWART D P, RANDOLPH M F. T-bar penetration testing in soft clay[J]. Journal of Geotechnical Engineering, 1994, 120(12): 2230-2235. doi: 10.1061/(ASCE)0733-9410(1994)120:12(2230)
    [21]
    HAN C. Performance of Plate Anchors under Sustained Loading[D]. Perth: Centre for Offshore Foundation Systems School of Civil, Environmental and Mining Engineering, The University of Western Australia, 2016.
    [22]
    LEHANE B M, GAUDIN C, RICHARDS D J, et al. Rate effects on the vertical uplift capacity of footings founded in clay[J]. Géotechnique, 2008, 58(1): 13-21. doi: 10.1680/geot.2008.58.1.13
    [23]
    RANDOLPH M, CASSIDY M, GOURVENEC S, et al. Challenges of offshore geotechnical engineering[C]// 16th International Conference on Soil Mechanics and Geotechnical Engineering: Geotechnology in Harmony with the Global Environment, ICSMGE 2005.
    [24]
    PAPPUSETTY D, PANDO M A. Numerical evaluation of long term monopile head behavior for ocean energy converters under sustained low amplitude lateral loading[J]. Int J Civ Struct Eng, 2013, 3: 669-684.
  • Cited by

    Periodical cited type(49)

    1. 程峰,李庆旺,杨德欢,何辉,杨柏. 非对称多层基坑支护桩体的沉降变形及稳定性数值模拟. 土工基础. 2025(01): 73-77+92 .
    2. 郭浩天,孙庆林,苑成旺,李向群,李继伟. 基于HS与HSS模型的深基坑支护结构变形与受力数值模拟分析. 水利与建筑工程学报. 2025(01): 71-79 .
    3. 马文琪,罗伟庭,姚星鹏. 基坑开挖工序优化及围护结构变形规律研究. 广东建材. 2025(03): 109-115 .
    4. 杨锦亚,程乐. 基坑工程降水引起渗流及变形的数值分析. 安徽建筑. 2025(04): 142-145 .
    5. 庞欢,许明超,李兆超,石洪洋,全科,潘普国. 多种支护作用下地铁区间明挖基坑稳定性分析. 安徽建筑. 2025(04): 138-141 .
    6. 曹明洋,马险峰. 基于在机开挖离心模型试验的改进MSD法评估. 岩土工程学报. 2024(01): 190-198 . 本站查看
    7. 王小丁,秦善良. 滨海软土超长深基坑开挖时空效应监测分析. 工程建设. 2024(01): 51-56 .
    8. 郝增明,闫楠,白晓宇,张立,张启军,林西伟. 杂填土地层深基坑微型桩-锚-撑组合支护体系受力特性原位试验. 中南大学学报(自然科学版). 2024(02): 755-773 .
    9. 高换莲. 不良地质条件下地铁车站主体结构开挖及复合型支护研究. 浙江水利水电学院学报. 2024(02): 71-76 .
    10. 刘利国,罗家文,朱碧堂. 地铁车站狭长基坑支撑异常轴力分析. 华东交通大学学报. 2024(03): 20-28 .
    11. 闫楠,郝增明,白晓宇,张立,孙林娜,张启军. 深基坑双排微型桩-锚-撑组合支护结构受力与变形特性. 中南大学学报(自然科学版). 2024(06): 2295-2309 .
    12. 马冲,黄平. 某项目基坑施工期间的安全监测分析. 安徽建筑. 2024(09): 131-132+180 .
    13. 马明强,赵新,刘世强,房贤东. 疏排桩-土钉墙组合支护结构优化效用数值模拟. 粘接. 2024(09): 156-159 .
    14. 项建龙,谢晓琴,高鑫阳,杨超,耿欣欣,王泽亮. 项目基坑支护数值模拟分析研究. 建筑技术开发. 2024(11): 161-164 .
    15. 卫蒋. 复杂地质条件下基坑支护工程设计及施工技术. 砖瓦. 2024(11): 174-176 .
    16. 徐长节,李欣雨. 基于人工神经网络的深基坑支护结构侧移预测. 上海交通大学学报. 2024(11): 1735-1744 .
    17. 张伟帆. 紧邻地铁内支撑结构深基坑监测分析. 广东土木与建筑. 2024(11): 25-29 .
    18. 陶畅,彭丽云,刘兵科,陈涵宇. 近接基坑开挖影响下既有地铁附属结构联合支护体系优化分析. 都市快轨交通. 2024(06): 106-114 .
    19. 吴跃东,隋本泉. 管线下穿桥梁方案优化设计及稳定性研究. 高寒高铁职业教育. 2024(01): 160-172 .
    20. 田德新. 软土地层深基坑开挖响应实测研究. 土工基础. 2023(01): 147-151 .
    21. 李旭,郑少强,佟庆伟,绳虎. 多种支护模式下基坑监测数据处理与分析. 山西建筑. 2023(05): 80-84 .
    22. 杨沛基,张军,严鹏. 淤泥质基坑开挖支护方案设计及施工监测研究. 华北科技学院学报. 2023(01): 47-55 .
    23. 张坤勇,张梦,聂美军,孙斌,刘江涛. 考虑开挖应力路径深基坑顺逆结合施工支护变形分析. 中国港湾建设. 2023(03): 29-37 .
    24. 陈伟,王文军,马刚,任永忠. 兰州某深基坑在降水下支护结构性能分析. 低温建筑技术. 2023(02): 117-121 .
    25. 邓伟,范瑛,赵富财,熊熙熙. 分期施工基坑开挖变形特征与数值模拟分析. 湖北工业大学学报. 2023(02): 66-73 .
    26. 崔巍. 拉森钢板桩在逆作法深基坑中的应用研究. 辽宁省交通高等专科学校学报. 2023(01): 21-25 .
    27. 梁二雷,王冰辉,郑功博,吴静. 临河倾斜互层下深基坑变形及渗流数值分析. 工业建筑. 2023(03): 188-196 .
    28. 谢俊. 建筑深基坑开挖支护施工要点探讨. 建材发展导向. 2023(12): 173-176 .
    29. 蔡映坤,李波,和子祺,马云燕. 河湖相软土区某深基坑开挖变形特征分析. 地质灾害与环境保护. 2023(02): 72-77 .
    30. 孙泽信,王永琛,卢彦竹,王南周,薛怀宇. 混合地层盾构超深接收井开挖安全监测分析. 建筑科学与工程学报. 2023(04): 144-152 .
    31. 张松,姜文盛,刘海飞,康祖玮,李达,段鹏辉. 郑州某地铁车站明挖深基坑支护结构稳定性分析. 山西建筑. 2023(15): 78-82 .
    32. 张坤勇,张梦,孙斌,李福东,简永洲. 考虑时空效应的软土狭长型深基坑地连墙变形计算方法. 岩土力学. 2023(08): 2389-2399 .
    33. 董海君. 淤泥层不同围护桩插入比条件下基坑变形特性研究. 铁道建筑技术. 2023(08): 62-65+159 .
    34. 丁俊男,戴名扬. 基于原位试验的深基坑开挖过程锚索受力规律研究. 江西建材. 2023(06): 19-21 .
    35. 邢锋. 市政道路交叉口工程深基坑监测分析. 江西建材. 2023(08): 101-103 .
    36. 汪亚林,李大华,陈硕豪,王迪. 深基坑开挖的数值模拟分析及支护优化. 合肥学院学报(综合版). 2023(05): 119-124 .
    37. 孙若翔. 复杂环境下城市建筑深基坑变形与数值模拟分析. 江西建材. 2022(01): 37-40 .
    38. 徐军. 大跨度深基坑井字形临时钢支撑支护可行性分析. 建筑施工. 2022(01): 172-176 .
    39. 李艳阳. 钻孔咬合桩及超缓凝混凝土施工技术分析. 邢台职业技术学院学报. 2022(01): 65-69+80 .
    40. 童建勇. 深厚淤泥质砂层深基坑降水施工数值研究. 广东建材. 2022(04): 42-45+55 .
    41. 赵媛. 大型基坑开挖支护方案设计及施工期稳定性监测研究. 建筑施工. 2022(03): 471-474+478 .
    42. 刘军. 复杂环境下地铁三线换乘车站深基坑变形研究. 科学技术创新. 2022(19): 126-129 .
    43. 张艳,张柯,郭靖. 矿区岩土施工安全监测系统设计及应用. 能源与环保. 2022(07): 36-42 .
    44. 臧士文,郑伟. 地铁深基坑施工过程受力变形规律与数值分析. 中国新技术新产品. 2022(13): 94-96 .
    45. 王德英,范文阳,庞彪. 预应力锚索排桩在围岩基坑开挖中的应用. 西部交通科技. 2022(09): 85-87 .
    46. 周中,鄢海涛,李守文,徐永选,胡明文. 高层建筑紧邻深大基坑开挖变形分析. 现代隧道技术. 2022(S1): 1102-1110 .
    47. 赵平. 深基坑开挖影响的有限元模拟与监测. 安庆师范大学学报(自然科学版). 2022(04): 24-28+36 .
    48. 张前进,孙亮,毕海鹏,杨建星. 基于GMM的深基坑围护墙水平位移与深基坑-隧道开挖全过程分析. 建筑结构. 2022(S2): 2267-2273 .
    49. 乔开放. 某基坑支护工程及周边建筑物的监测与分析. 科技资讯. 2021(29): 1-4+11 .

    Other cited types(36)

Catalog

    Article views (292) PDF downloads (78) Cited by(85)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return