Citation: | SUN Yifei, WANG Le, ZHANG Tingran, ZHANG Chunhui, TIAN Yinghui. Experimental study on bearing capacity of plate anchor in clay under repeated loading[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 659-666. DOI: 10.11779/CJGE20230359 |
[1] |
王栋, 胡玉霞, 宋振河. 均质黏土中圆形平板锚的抗拉承载力分析[J]. 岩土力学, 2007, 28(6): 1242-1246. doi: 10.3969/j.issn.1000-7598.2007.06.034
(WANG Dong, HU Yuxia, SONG Zhenhe. Analysis of uplift capacity of circular plate anchors in uniform clay[J]. Rock and Soil Mechanics, 2007, 28(6): 1242-1246 doi: 10.3969/j.issn.1000-7598.2007.06.034
|
[2] |
DAS B M. Model tests for uplift capacity of foundations in clay[J]. Soils and Foundations, 1978, 18(2): 17-24. doi: 10.3208/sandf1972.18.2_17
|
[3] |
DAS B M, SHIN E C, DASS R N, et al. Suction force below plate anchors in soft clay[J]. Marine Georesources & Geotechnology, 1994, 12(1): 71-81.
|
[4] |
DAS B M. Behavior of a shallow plate anchor in clay under sustained loading[J]. Marine Georesources & Geotechnology, 1995, 13(4): 417-428.
|
[5] |
GAUDIN C, O'LOUGHLIN C D, RANDOLPH M F, et al. Influence of the installation process on the performance of suction embedded plate anchors[J]. Géotechnique, 2006, 56(6): 381-391. doi: 10.1680/geot.2006.56.6.381
|
[6] |
O'LOUGHLIN C D, BLAKE A P, RICHARDSON M D, et al. Installation and capacity of dynamically embedded plate anchors as assessed through centrifuge tests[J]. Ocean Engineering, 2014, 88: 204-213. doi: 10.1016/j.oceaneng.2014.06.020
|
[7] |
ROWE R K, DAVIS E H. The behaviour of anchor plates in clay[J]. Géotechnique, 1982, 32(1): 9-23. doi: 10.1680/geot.1982.32.1.9
|
[8] |
MERIFIELD R S, SLOAN S W, YU H S. Stability of plate anchors in undrained clay[J]. Géotechnique, 2001, 51(2): 141-153. doi: 10.1680/geot.2001.51.2.141
|
[9] |
MERIFIELD R S, LYAMIN A V, SLOAN S W, et al. Three-dimensional lower bound solutions for stability of plate anchors in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(3): 243-253. doi: 10.1061/(ASCE)1090-0241(2003)129:3(243)
|
[10] |
SONG Z H, HU Y X, RANDOLPH M F. Numerical simulation of vertical pullout of plate anchors in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(6): 866-875. doi: 10.1061/(ASCE)1090-0241(2008)134:6(866)
|
[11] |
WANG D, HU Y X, RANDOLPH M F. Three-dimensional large deformation finite-element analysis of plate anchors in uniform clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(2): 355-365. doi: 10.1061/(ASCE)GT.1943-5606.0000210
|
[12] |
于龙, 刘君, 孔宪京. 锚板在正常固结黏土中的承载力[J]. 岩土力学, 2007, 28(7): 1427-1434. doi: 10.3969/j.issn.1000-7598.2007.07.027
YU Long, LIU Jun, KONG Xianjing. Stability of plate anchors in NC clay[J]. Rock and Soil Mechanics, 2007, 28(7): 1427-1434. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.07.027
|
[13] |
PONNIAH D A, FINLAY T W. Cyclic behaviour of plate anchors[J]. Canadian Geotechnical Journal, 1988, 25(2): 374-381. doi: 10.1139/t88-038
|
[14] |
YU L, ZHOU Q, LIU J. Experimental study on the stability of plate anchors in clay under cyclic loading[J]. Theoretical and Applied Mechanics Letters, 2015, 5(2): 93-96. doi: 10.1016/j.taml.2015.02.005
|
[15] |
SINGH S P, RAMASWAMY S V. Effect of shape on holding capacity of plate anchors buried in soft soil[J]. Geomechanics and Geoengineering, 2008, 3(2): 145-154. doi: 10.1080/17486020802126875
|
[16] |
SINGH S P, RAMASWAMY S V. Effects of cyclic frequency and pre-loading on behaviour of plate anchors[C]// Deep Foundations and Geotechnical In Situ Testing, Shanghai, China. Reston, VA: American Society of Civil Engineers, 2010(205): 252-260.
|
[17] |
ZHOU Z F, O'LOUGHLIN C D, WHITE D J, et al. Improvements in plate anchor capacity due to cyclic and maintained loads combined with consolidation[J]. Géotechnique, 2020, 70(8): 732-749. doi: 10.1680/jgeot.19.TI.028
|
[18] |
CHEN J F. Centrifuge Model Study on Pull-out Behaviour of Suction Embedded Plate Anchor[D]. Singapore: Department of Civil and Environmental Engineering, Nation University of Singapore, 2017.
|
[19] |
HOUSE A R, OLIVEIRA J R M S, RANDOLPH M F. Evaluating the coefficient of consolidation using penetration tests[J]. International Journal of Physical Modelling in Geotechnics, 2001, 1(3): 17-26. doi: 10.1680/ijpmg.2001.010302
|
[20] |
STEWART D P, RANDOLPH M F. T-bar penetration testing in soft clay[J]. Journal of Geotechnical Engineering, 1994, 120(12): 2230-2235. doi: 10.1061/(ASCE)0733-9410(1994)120:12(2230)
|
[21] |
HAN C. Performance of Plate Anchors under Sustained Loading[D]. Perth: Centre for Offshore Foundation Systems School of Civil, Environmental and Mining Engineering, The University of Western Australia, 2016.
|
[22] |
LEHANE B M, GAUDIN C, RICHARDS D J, et al. Rate effects on the vertical uplift capacity of footings founded in clay[J]. Géotechnique, 2008, 58(1): 13-21. doi: 10.1680/geot.2008.58.1.13
|
[23] |
RANDOLPH M, CASSIDY M, GOURVENEC S, et al. Challenges of offshore geotechnical engineering[C]// 16th International Conference on Soil Mechanics and Geotechnical Engineering: Geotechnology in Harmony with the Global Environment, ICSMGE 2005.
|
[24] |
PAPPUSETTY D, PANDO M A. Numerical evaluation of long term monopile head behavior for ocean energy converters under sustained low amplitude lateral loading[J]. Int J Civ Struct Eng, 2013, 3: 669-684.
|
1. |
程峰,李庆旺,杨德欢,何辉,杨柏. 非对称多层基坑支护桩体的沉降变形及稳定性数值模拟. 土工基础. 2025(01): 73-77+92 .
![]() | |
2. |
郭浩天,孙庆林,苑成旺,李向群,李继伟. 基于HS与HSS模型的深基坑支护结构变形与受力数值模拟分析. 水利与建筑工程学报. 2025(01): 71-79 .
![]() | |
3. |
马文琪,罗伟庭,姚星鹏. 基坑开挖工序优化及围护结构变形规律研究. 广东建材. 2025(03): 109-115 .
![]() | |
4. |
杨锦亚,程乐. 基坑工程降水引起渗流及变形的数值分析. 安徽建筑. 2025(04): 142-145 .
![]() | |
5. |
庞欢,许明超,李兆超,石洪洋,全科,潘普国. 多种支护作用下地铁区间明挖基坑稳定性分析. 安徽建筑. 2025(04): 138-141 .
![]() | |
6. |
曹明洋,马险峰. 基于在机开挖离心模型试验的改进MSD法评估. 岩土工程学报. 2024(01): 190-198 .
![]() | |
7. |
王小丁,秦善良. 滨海软土超长深基坑开挖时空效应监测分析. 工程建设. 2024(01): 51-56 .
![]() | |
8. |
郝增明,闫楠,白晓宇,张立,张启军,林西伟. 杂填土地层深基坑微型桩-锚-撑组合支护体系受力特性原位试验. 中南大学学报(自然科学版). 2024(02): 755-773 .
![]() | |
9. |
高换莲. 不良地质条件下地铁车站主体结构开挖及复合型支护研究. 浙江水利水电学院学报. 2024(02): 71-76 .
![]() | |
10. |
刘利国,罗家文,朱碧堂. 地铁车站狭长基坑支撑异常轴力分析. 华东交通大学学报. 2024(03): 20-28 .
![]() | |
11. |
闫楠,郝增明,白晓宇,张立,孙林娜,张启军. 深基坑双排微型桩-锚-撑组合支护结构受力与变形特性. 中南大学学报(自然科学版). 2024(06): 2295-2309 .
![]() | |
12. |
马冲,黄平. 某项目基坑施工期间的安全监测分析. 安徽建筑. 2024(09): 131-132+180 .
![]() | |
13. |
马明强,赵新,刘世强,房贤东. 疏排桩-土钉墙组合支护结构优化效用数值模拟. 粘接. 2024(09): 156-159 .
![]() | |
14. |
项建龙,谢晓琴,高鑫阳,杨超,耿欣欣,王泽亮. 项目基坑支护数值模拟分析研究. 建筑技术开发. 2024(11): 161-164 .
![]() | |
15. |
卫蒋. 复杂地质条件下基坑支护工程设计及施工技术. 砖瓦. 2024(11): 174-176 .
![]() | |
16. |
徐长节,李欣雨. 基于人工神经网络的深基坑支护结构侧移预测. 上海交通大学学报. 2024(11): 1735-1744 .
![]() | |
17. |
张伟帆. 紧邻地铁内支撑结构深基坑监测分析. 广东土木与建筑. 2024(11): 25-29 .
![]() | |
18. |
陶畅,彭丽云,刘兵科,陈涵宇. 近接基坑开挖影响下既有地铁附属结构联合支护体系优化分析. 都市快轨交通. 2024(06): 106-114 .
![]() | |
19. |
吴跃东,隋本泉. 管线下穿桥梁方案优化设计及稳定性研究. 高寒高铁职业教育. 2024(01): 160-172 .
![]() | |
20. |
田德新. 软土地层深基坑开挖响应实测研究. 土工基础. 2023(01): 147-151 .
![]() | |
21. |
李旭,郑少强,佟庆伟,绳虎. 多种支护模式下基坑监测数据处理与分析. 山西建筑. 2023(05): 80-84 .
![]() | |
22. |
杨沛基,张军,严鹏. 淤泥质基坑开挖支护方案设计及施工监测研究. 华北科技学院学报. 2023(01): 47-55 .
![]() | |
23. |
张坤勇,张梦,聂美军,孙斌,刘江涛. 考虑开挖应力路径深基坑顺逆结合施工支护变形分析. 中国港湾建设. 2023(03): 29-37 .
![]() | |
24. |
陈伟,王文军,马刚,任永忠. 兰州某深基坑在降水下支护结构性能分析. 低温建筑技术. 2023(02): 117-121 .
![]() | |
25. |
邓伟,范瑛,赵富财,熊熙熙. 分期施工基坑开挖变形特征与数值模拟分析. 湖北工业大学学报. 2023(02): 66-73 .
![]() | |
26. |
崔巍. 拉森钢板桩在逆作法深基坑中的应用研究. 辽宁省交通高等专科学校学报. 2023(01): 21-25 .
![]() | |
27. |
梁二雷,王冰辉,郑功博,吴静. 临河倾斜互层下深基坑变形及渗流数值分析. 工业建筑. 2023(03): 188-196 .
![]() | |
28. |
谢俊. 建筑深基坑开挖支护施工要点探讨. 建材发展导向. 2023(12): 173-176 .
![]() | |
29. |
蔡映坤,李波,和子祺,马云燕. 河湖相软土区某深基坑开挖变形特征分析. 地质灾害与环境保护. 2023(02): 72-77 .
![]() | |
30. |
孙泽信,王永琛,卢彦竹,王南周,薛怀宇. 混合地层盾构超深接收井开挖安全监测分析. 建筑科学与工程学报. 2023(04): 144-152 .
![]() | |
31. |
张松,姜文盛,刘海飞,康祖玮,李达,段鹏辉. 郑州某地铁车站明挖深基坑支护结构稳定性分析. 山西建筑. 2023(15): 78-82 .
![]() | |
32. |
张坤勇,张梦,孙斌,李福东,简永洲. 考虑时空效应的软土狭长型深基坑地连墙变形计算方法. 岩土力学. 2023(08): 2389-2399 .
![]() | |
33. |
董海君. 淤泥层不同围护桩插入比条件下基坑变形特性研究. 铁道建筑技术. 2023(08): 62-65+159 .
![]() | |
34. |
丁俊男,戴名扬. 基于原位试验的深基坑开挖过程锚索受力规律研究. 江西建材. 2023(06): 19-21 .
![]() | |
35. |
邢锋. 市政道路交叉口工程深基坑监测分析. 江西建材. 2023(08): 101-103 .
![]() | |
36. |
汪亚林,李大华,陈硕豪,王迪. 深基坑开挖的数值模拟分析及支护优化. 合肥学院学报(综合版). 2023(05): 119-124 .
![]() | |
37. |
孙若翔. 复杂环境下城市建筑深基坑变形与数值模拟分析. 江西建材. 2022(01): 37-40 .
![]() | |
38. |
徐军. 大跨度深基坑井字形临时钢支撑支护可行性分析. 建筑施工. 2022(01): 172-176 .
![]() | |
39. |
李艳阳. 钻孔咬合桩及超缓凝混凝土施工技术分析. 邢台职业技术学院学报. 2022(01): 65-69+80 .
![]() | |
40. |
童建勇. 深厚淤泥质砂层深基坑降水施工数值研究. 广东建材. 2022(04): 42-45+55 .
![]() | |
41. |
赵媛. 大型基坑开挖支护方案设计及施工期稳定性监测研究. 建筑施工. 2022(03): 471-474+478 .
![]() | |
42. |
刘军. 复杂环境下地铁三线换乘车站深基坑变形研究. 科学技术创新. 2022(19): 126-129 .
![]() | |
43. |
张艳,张柯,郭靖. 矿区岩土施工安全监测系统设计及应用. 能源与环保. 2022(07): 36-42 .
![]() | |
44. |
臧士文,郑伟. 地铁深基坑施工过程受力变形规律与数值分析. 中国新技术新产品. 2022(13): 94-96 .
![]() | |
45. |
王德英,范文阳,庞彪. 预应力锚索排桩在围岩基坑开挖中的应用. 西部交通科技. 2022(09): 85-87 .
![]() | |
46. |
周中,鄢海涛,李守文,徐永选,胡明文. 高层建筑紧邻深大基坑开挖变形分析. 现代隧道技术. 2022(S1): 1102-1110 .
![]() | |
47. |
赵平. 深基坑开挖影响的有限元模拟与监测. 安庆师范大学学报(自然科学版). 2022(04): 24-28+36 .
![]() | |
48. |
张前进,孙亮,毕海鹏,杨建星. 基于GMM的深基坑围护墙水平位移与深基坑-隧道开挖全过程分析. 建筑结构. 2022(S2): 2267-2273 .
![]() | |
49. |
乔开放. 某基坑支护工程及周边建筑物的监测与分析. 科技资讯. 2021(29): 1-4+11 .
![]() |