AN Ran, KONG Ling-wei, ZHANG Xian-wei. Mechanical properties and generalized Duncan-Chang model for granite residual soils using borehole shear tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1723-1732. DOI: 10.11779/CJGE202009017
    Citation: AN Ran, KONG Ling-wei, ZHANG Xian-wei. Mechanical properties and generalized Duncan-Chang model for granite residual soils using borehole shear tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1723-1732. DOI: 10.11779/CJGE202009017

    Mechanical properties and generalized Duncan-Chang model for granite residual soils using borehole shear tests

    More Information
    • Received Date: December 26, 2019
    • Available Online: December 07, 2022
    • Granite residual soil, as the weathering product of near-surface granite, is widely distributed in the southeast coastal areas of China. In order to study the influences of weathering degree on the in-situ mechanical properties of granite residual soil, the borehole shear tests are carried out for the residual soil along the depth of foundation pit. The in-situ stress-strian curves under different normal stresses and parameters of the Duncan-Chang model are obtained. Then, the regression relationships between the five model parameters and the weathering degree index represented by the gravel content are determined. According to the Duncan-Chang model, the stress-strain curves of residual soil with different weathering degrees are predicted and compared with the measured data. The results show that the grain compositions of residual soil are significantly correlated with the depth of soil layers. The stress-strain curves obtained by the borehole shear tests show the characteristics of strain-hardening deformation. According to φ the stress-strain relationship of in-situ tests, the parameters of the generalized Duncan-Chang model, including cohesion c, internal friction angle, stress failure ratio Rf and fitting parameters K and n, can be deduced effectively. Through regression analysis, the parameters can be fitted by the corresponding functions for the gravel content. The stress-strain curves calculated by the modified model are in good agreement with the experimental results, which shows that the generalized Duncan-Chang model can reasonably describe the in-situ mechanical behavior of granite residual soil. This study extends the applicability of the Duncan-Chang constitutive model.
    • [1]
      KONG L W, SAYEM H M, TIAN H. Influence of drying–wetting cycles on soil-water characteristic curve of undisturbed granite residual soils and microstructure mechanism by nuclear magnetic resonance (NMR) spin-spin relaxation time (T2) relaxometry[J]. Canadian Geotechnical Journal, 2018, 55(2): 208-216. doi: 10.1139/cgj-2016-0614
      [2]
      杨光华. 广东深基坑支护工程的发展及新挑战[J]. 岩石力学与工程学报, 2012, 31(11): 2276-2284. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201211015.htm

      YAN Guang-hua. Development and new challenges of deep excavation supporting engineering in Guangdong province[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11): 2276-2284. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201211015.htm
      [3]
      DA FONSECA A V, CARVALHO J, FERREIRA C, et al. Characterization of a profile of residual soil from granite combining geological, geophysical and mechanical testing techniques[J]. Geotechnical and Geological Engineering, 2006, 24(5): 1307-1348. doi: 10.1007/s10706-005-2023-z
      [4]
      DA FONSECA A V, SILVA S R, CRUZ N. Geotechnical characterization by in situ and lab tests to the back analysis of a supported excavation in Metro do Porto[J]. Geotechnical and Geological Engineering, 2010, 28(3): 251-264. doi: 10.1007/s10706-008-9183-6
      [5]
      安然, 黎澄生, 孔令伟, 等. 花岗岩残积土原位力学特性的钻探扰动与卸荷滞时效应[J]. 岩土工程学报, 2020, 42(1): 109-116. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001018.htm

      AN Ran, LI Cheng-sheng, KONG Ling-wei, et al. Effects of drilling disturbance and unloading lag on in-situ mechanical characteristics of granite residual soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 109-116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001018.htm
      [6]
      温勇, 杨光华, 汤连生, 等. 广州地区花岗岩残积土力学特性试验及参数研究[J]. 岩土力学, 2016, 37(增刊2): 209-215. doi: 10.16285/j.rsm.2016.S2.025

      WEN Yong, YANG GUang-hua, TANG Lian-sheng, et al. Tests and parameters study of mechanical properties of granite residual soil in Guangzhou area[J]. Rock and Soil Mechanics, 2016, 37(S2): 209-215. (in Chinese) doi: 10.16285/j.rsm.2016.S2.025
      [7]
      安然, 孔令伟, 黎澄生, 等. 确定残积土原位G-γ衰减曲线的建议方法与适宜性分析[J]. 岩土力学, 2018, 39(12): 4429-4436. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812017.htm

      AN Ran, KONG Ling-wei, LI Cheng-sheng, et al. A proposed method to determine in-situ shear modulus and shear strain decay curves of granite residual soil and its suitability analysis[J]. Rock and Soil Mechanics, 2018, 39(12): 4429-4436. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812017.htm
      [8]
      郑敏洲, 简文彬, 吴茂明. 花岗岩残积土边坡稳定性可靠度分析[J]. 岩石力学与工程学报, 2005, 24(增刊2): 5337-5340. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2005S2010.htm

      ZHENG Min-zhou, JIAN Wen-bin, WU Mao-ming. Reliability analysis of stability of granite residual soil slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(S2): 5337-5340. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2005S2010.htm
      [9]
      BAI Wei, KONG Ling-wei, GUO Aiguo, et al. Stress- strain-electrical evolution properties and damage evolution equation of lateritic soil under uniaxial compression[J]. ASTM international Journal of Testing and Evaluation, 2017, 45(4): 1247-1260.
      [10]
      沈珠江. 莫尔–库仑材料的屈服理论[J]. 水利水运科学研究, 1981(2): 1-9.

      SHEN Zhu-Jiang. A yield theory for Mohr-Cloumb material[J]. Hydro-Science and Engineering, 1981(2): 1-9. (in Chinese)
      [11]
      DRUCKER D C, PRAGER W. Soilmechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics, 1952, 10: 157-165. doi: 10.1090/qam/48291
      [12]
      DUNCAN J M, CHANG C Y. Nonlinear analysis of sterss and starin in soils[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96(SM5): 1629-1653.
      [13]
      LIU M D, CARTER J P. A structured Cam clay model[J]. Canadian Geotechnical Journal, 2002, 39(1): 1313-1332.
      [14]
      YAO Y P, HOU W, ZHOU A N. UH model: three- dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469.
      [15]
      黄文熙. 土的弹塑性应力–应变模型理论[J]. 岩土力学, 1979, 1(1): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX197901001.htm

      HUANG Wen-xi. Theory of Elastoplastic stress-strain model of soil[J]. Rock and Soil Mechanics, 1979, 1(1): 1-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX197901001.htm
      [16]
      沈珠江. 结构性粘土的弹塑性损伤模型[J]. 岩土工程学报, 1993, 15(3): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199303002.htm

      SHEN Zhu-jiang. An elasto-plastic demage model of cemented clay[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(3): 21-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199303002.htm
      [17]
      殷德顺, 王保田, 王云涛. 不同应力路径下的邓肯–张模型模量公式[J]. 岩土工程学报, 2007, 29(9): 1380-1385. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200709017.htm

      YIN De-shun, WANG Bao-tian, WANG Yun-tao. Tangent elastic modulus of Duncan-Chang model for different stress paths[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1380-1385. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200709017.htm
      [18]
      李广信. 用旁压试验求Duncan双曲线模型的参数[J]. 勘察科学技术, 1986(5): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX198605006.htm

      LI Guang-xin. The parameters of Duncan hyperbolic model based on pressuremeter test[J]. Site Investigation Science and Technology, 1986(5): 25-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX198605006.htm
      [19]
      刘小生, 汪小刚, 马怀发, 等. 旁压试验反演邓肯–张模型参数方法研究[J]. 岩土工程学报, 2004, 26(5): 601-606. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200405004.htm

      LIU Xiao-sheng, WANG Xiao-gang, MA Huai-fa, et al. Study on back-analysis method of constitutive parameters for Duncan-Chang model based on in-situ pressuremeter tests[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 601-606. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200405004.htm
      [20]
      刘军定, 李荣建, 孙萍, 等. 基于结构性黄土联合强度的邓肯-张非线性本构模型[J]. 岩土工程学报, 2018, 40(增刊1): 124-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1021.htm

      LIU Jun-ding, LI Rong-jian, SUN Ping, et al. Duncan-Chang nonlinear constitutive model based on joint strength theory of structural loess[J]. Chinese Jounal of Geotechnical Engineering, 2018, 40(S1): 124-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1021.htm
      [21]
      李晶晶, 孔令伟, 穆坤. 膨胀土原位孔内剪切试验与强度响应特征[J]. 岩土力学, 2017, 38(2): 453-461. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702020.htm

      LI Jing-jing, KONG Ling-wei, MU Kun. In-situ borehole shear test on expansive soil and its strength characteristics[J]. Rock and Soil Mechanics, 2017, 38(2): 453-461. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702020.htm
      [22]
      MILLER G A, KHOURY C N. Observations from Borehole Shear Testing in Unsaturated Soil[M]//Unsaturated Soils: Research and Applications. Napoli: Springer Berlin Heidelberg, 2012.
      [23]
      HANDY R L. Borehole shear test and slope stability[C]//Use of in Situ Tests in Geotechnical Engineering, ASCE, 2008, New York.
      [24]
      LUTENEGGER A J, HALLBERG G R. Borehole shear test in geotechnical investigations[J]. American Society for Testing and Materials, 1981: 566-578.
      [25]
      ZHANG X W, KONG L W, YIN S, et al. Engineering geology of basaltic residual soil in Leiqiong, southern China[J]. Engineering Geology, 2017, 220: 196-207.
      [26]
      RAHARDJO H, SATYANAGA A, LEONG E C, et al. Variability of residual soil properties[J]. Engineering Geology, 2012(141/142): 124-140.
      [27]
      ZHAI Q, RAHARDJO H, SATYANAGA A. Variability in unsaturated hydraulic properties of residual soil in Singapore[J]. Engineering Geology, 2016, 209: 21-29.
      [28]
      AN R, KONG L W, GUO A G, et al. A proposed method to determine in-situ shear modulus and shear strain decay curves in different structured soils[C]//7th International Symposium on Deformation Characteristics of Geomaterials, 2019, Glasgow.
      [29]
      方谦, 洪汉烈, 赵璐璐, 等. 风化成土过程中自生矿物的气候指示意义[J]. 地球科学, 2018, 43(3): 753-769. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201803009.htm

      FANG Qian, HONG Han-lie, ZHAO Lu-lu, et al. Climatic Implicaiton of authigenic minerals formed during pedogenic weathering process[J]. Earth Science, 2018, 43(3): 753-769. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201803009.htm
      [30]
      CERYAN S, ZORLU K, GOKCEOGLU C, et al. The use of cation packing index for characterizing the weathering degree of granitic rocks[J]. Engineering Geology, 2008, 98(1/2): 60-74.
      [31]
      吴蓓娟, 彭渤, 张坤, 等. 黑色页岩化学风化程度指标研究[J]. 地质学报, 2016, 90(4): 818-832. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201604016.htm

      WU Bei-juan, ZHOU Shang-zhe, ZHANG Kun. A new chemical index of identifying the weathering degree of black shale[J]. Acta Geologica Sinica, 2016, 90(4): 818-832. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201604016.htm
      [32]
      朱思军, 杨光华, 陈富强, 张玉成. 十字板剪切试验在珠三角深厚软土基坑工程中的应用[J]. 广东水利水电, 2016(6): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-GDSD201606008.htm

      ZHU Si-jun, YANG Guang-hua, CHEN Fu-qiang, et al. Application of the vane shear test in excavation engineering in deep and soft soil in the pearl river delta[J]. Guangdong Water Resources and Hydropower, 2016(6): 28-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDSD201606008.htm
      [33]
      王立忠, 赵志远, 李玲玲. 考虑土体结构性的修正邓肯—张模型[J]. 水利学报, 2004, 35(1): 83-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200401016.htm

      WANG Li-zhong, ZHAO Zhi-yuan, LI Ling-ling. Non-linear elastic model considering soil structural damage[J]. Journal of Hydraulic Engineering, 2004, 35(1): 83-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200401016.htm
    • Related Articles

      [1]AN Peng, ZHANG Jie, NI Wankui, MA Xinchao, HU Xingqun, ZHANG Changbo. Settlement and deformation characteristics of high fill of Luojiahe expansive soil in Ankang Airport[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 833-839. DOI: 10.11779/CJGE20220071
      [2]WANG Lai-cai, HU Hai-jun, WANG Chen, KANG Shun-xiang. Measurement and prediction of water retention curve of remolded loess with different degrees of compaction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 204-208. DOI: 10.11779/CJGE2021S1037
      [3]XIAO Jian-zhang, MA Yan-yi, ZHOU Jie, CAI Hong, WEI Ying-qi, LIU Chen. Numerical simulation of shear strength of rock-soil mixtures by using PFC2D[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 123-128. DOI: 10.11779/CJGE2020S2022
      [4]WU Shuai-feng, DU Ji-fang, WEI Ran, WEI Ying-qi, XIAO Jian-zhang, YAN Jun. Theoretical method and application of dynamic consolidation range of high fill earth and stone[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 43-49. DOI: 10.11779/CJGE2020S2008
      [5]ZHU Cai-hui, LI Ning. Moistening effects of high-fill embankment due to rainfall infiltration in loess gully region[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 845-854. DOI: 10.11779/CJGE202005006
      [6]CAO Jie, ZHANG Ji-wen, ZHENG Jian-guo, LIANG Xiao-long, LIU Zhi, LI Pan. Design of high-fill reclamation projects in loess areas[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 109-112. DOI: 10.11779/CJGE2019S1028
      [7]DUAN Xu, DONG Qi, MEN Yu-ming, CHANG Yuan, YE Wan-jun. Change of groundwater and water content of loess high fill in gully regions[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1753-1758. DOI: 10.11779/CJGE201809024
      [8]MA Yan, WANG Jia-ding, PENG Shu-jun, LI Bin. Deformation and failure mechanism of high sticking loess slope[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 518-528. DOI: 10.11779/CJGE201603016
      [9]ZHENG Junjie, ZHAO Jianbin, CHEN Baoguo. Vertical earth pressure on culverts under high embankments[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1009-1013.
      [10]XIE Chunqing, LIU Hanchao, GAN Houyi. Study on deformation of ground under high fill of block and detritus[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 38-41.
    • Cited by

      Periodical cited type(20)

      1. 张文栋,程岩,袁武立,郑龙浩. 降雨作用下黄土基岩滑坡变形特征及演化规律. 陕西水利. 2025(04): 112-114+126 .
      2. 许博闻,兰恒星,刘世杰. 界面形态对黄土-泥岩接触面剪切力学特性影响研究. 工程地质学报. 2024(02): 448-462 .
      3. 黄晓虎,魏兆亨,易武,郭飞,黄海峰,肖宇煌. 裂隙优势流入渗诱发堆积层滑坡浅层破坏机理研究. 岩土工程学报. 2024(06): 1136-1145 . 本站查看
      4. 赵宽耀,许强,陈婉琳,彭大雷,高登辉. 黄土塬边漫灌区土体水入渗过程研究. 岩土力学. 2024(09): 2754-2764 .
      5. 王立朝,任三绍,李金秋. 降雨作用下古滑坡复活机理物理模拟试验研究. 中国地质灾害与防治学报. 2024(05): 21-31 .
      6. 王诏楷. 地下水人工回灌颗粒沉积研究进展. 江淮水利科技. 2023(01): 9-14 .
      7. 周峙,罗易,张家铭,孙狂飙. 考虑裂隙面积率的裂隙性黏土优势流双域入渗规律研究. 安全与环境工程. 2023(02): 109-118 .
      8. 吴玮江,宋丙辉,刘迪,安亚鹏. 黄土塬区包气带水分运移特征研究. 水文地质工程地质. 2023(03): 12-22 .
      9. 曾鹏,王宇豪,张天龙,张琳,南骁聪. 基于NSGA-Ⅱ遗传算法的黄土滑坡参数反分析与稳定性预测. 地球科学. 2023(05): 1675-1685 .
      10. 冯乐涛,吴玮江,刘兴荣,宿星,万朝东. 黄土高原降水入渗方式与引发滑坡研究——以甘肃黄土地区为例. 科学技术与工程. 2023(14): 5937-5945 .
      11. 许增光,李海洋,柴军瑞,曹成,陈东来. 堤坝内集中渗漏通道与周围介质水量交换研究. 水力发电学报. 2023(07): 12-23 .
      12. 赵宽耀,许强,高登辉,刘方洲,彭大雷,陈婉琳. 坡底饱和型黄土滑坡离心模拟试验. 岩土力学. 2023(11): 3213-3223 .
      13. 赵鲁庆,彭建兵,马鹏辉,冷艳秋,朱兴华. 黄土细观界面及其灾害效应研究初探. 工程地质学报. 2023(06): 1783-1798 .
      14. 许强,陈婉琳,蒲川豪,袁爽,刘佳良. 基于自然的解决方案在黄土高原重大工程灾变防控中的理论与实践. 工程地质学报. 2022(04): 1179-1192 .
      15. 宁瑞浩,冷艳秋,何芝远,李泽坤,马哲. 基于CT的黄土孔隙尺度优先流特性. 科学技术与工程. 2022(23): 9927-9936 .
      16. 蒋小虎,黄跃廷,胡海军,陈铄,陈锐,王崇华,汪慧,康顺祥. 基于原位双环、试坑浸水试验和数值模拟反演的Q_3黄土饱和渗透系数对比研究. 岩土力学. 2022(11): 2941-2951 .
      17. 李同录,汪颖,胡向阳,李萍,王宇. 厚层非饱和黄土中优势流和活塞流的讨论. 工程地质学报. 2022(06): 1842-1848 .
      18. 张永双,吴瑞安,任三绍. 降雨优势入渗通道对古滑坡复活的影响. 岩石力学与工程学报. 2021(04): 777-789 .
      19. 孙恒飞,朱兴华,成玉祥,张智锋,张卜平,蔡佳乐. 黄土优势渗流研究进展与展望. 自然灾害学报. 2021(06): 1-12 .
      20. 侯孝东,涂国祥,邱潇,李明,王清,钱昭宇. 汉源九襄地区深厚砾石层渗透特性研究. 水利与建筑工程学报. 2020(04): 192-197 .

      Other cited types(23)

    Catalog

      Article views (317) PDF downloads (146) Cited by(43)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return