• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHU Cai-hui, LI Ning. Moistening effects of high-fill embankment due to rainfall infiltration in loess gully region[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 845-854. DOI: 10.11779/CJGE202005006
Citation: ZHU Cai-hui, LI Ning. Moistening effects of high-fill embankment due to rainfall infiltration in loess gully region[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 845-854. DOI: 10.11779/CJGE202005006

Moistening effects of high-fill embankment due to rainfall infiltration in loess gully region

More Information
  • Received Date: March 16, 2019
  • Available Online: December 07, 2022
  • Investigating the infiltration law and moistening deformation (MD) of high fill embankment (HFE) under rainfall infiltration (RI) conditions is of great significance for the exploration of the formation mechanism of post-construction settlement and the design of water drainage for high fill in the loess gully area. Based on a loess high fill project, the in-situ settlement monitoring of the fill area and the water-force characteristic experiments of unsaturated soil are carried out. The fluid-solid coupling numerical method is employed to study the infiltration law and MD characteristics of HFE under different rainfall types and compaction degrees. The results show that: (1) Because of the unevenness of compaction degree and rainfall type, the RI depth below the surface of HFE changes from 2.0 m to 7.0 m. (2) The MD ratio caused by heavy RI (storm, heavy rain) is 1.6%, which is greater than 1.2% of moderate rain and 0.3% of light rain. The MD ratios caused by heavy rainfall under different compaction degrees (λ=0.88, 0.93 and 0.98) are 1.8%, 1.5% and 1.3%, respectively. It indicates that the appropriate waterproofing and drainage measures are important to reduce the MD of HFE. (3) Heavy RI can cause excessive MD differences and shear strain mutations at the interface of the fill and the original foundation, which are the main sources of cracking and water damage at the junction of the fill and the original foundation.
  • [1]
    徐明, 宋二祥. 高填方长期工后沉降研究的综述[J]. 清华大学学报(自然科学版), 2009, 49(6): 786-789. doi: 10.3321/j.issn:1000-0054.2009.06.002

    XU Ming, SONG Er-xiang. Review of long-term setting of high fills[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(6): 786-789. (in Chinese) doi: 10.3321/j.issn:1000-0054.2009.06.002
    [2]
    葛苗苗, 李宁, 张炜, 等. 黄土高填方沉降规律分析及工后沉降反演预测[J]. 岩石力学与工程学报, 2017, 36(3): 745-753. doi: 10.13722/j.cnki.jrme.2016.0014

    GE Miao-miao, LI Ning, ZHANG Wei, et al. Settlement behavior and inverse prediction of post-construction settlement of high filled loess embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 745-753. (in Chinese) doi: 10.13722/j.cnki.jrme.2016.0014
    [3]
    姚仰平, 祁生钧, 车力文. 高填方地基工后沉降计算[J]. 水力发电学报, 2016, 35(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201603001.htm

    YAO Yang-ping, QI Sheng-jun, CHE Li-wen. Computational method of post-construction settlement for high-fill embankments[J]. Journal of Hydroelectric Engineering, 2016, 35(3): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201603001.htm
    [4]
    罗汀, 刘引, 韩黎明, 等. 高填方机场工后沉降监测及数据分析[J]. 中国民航大学学报, 2017, 35(3): 27-32. doi: 10.3969/j.issn.1674-5590.2017.03.007

    LUO Ting, LIU Yin, HAN Li-ming, et al. Post-construction settlement monitoring and data analysis of high filling engineering of airport[J]. Journal of Civil Aviation University of China, 2017, 35(3): 27-32. (in Chinese) doi: 10.3969/j.issn.1674-5590.2017.03.007
    [5]
    朱才辉, 李宁, 刘明振, 等. 吕梁机场黄土高填方地基工后沉降时空规律分析[J]. 岩土工程学报, 2013, 35(2): 293-301. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302015.htm

    ZHU Cai-hui, LI Ning, LIU Ming-zhen. Spatiotemporal regularity analysis on the post-construction settlement of loess high filled foundation of Lüliang Airport[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 293-301. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302015.htm
    [6]
    沈细中, 刘隆斌, 陈敏, 等. 恶劣环境条件下高填方设计关键技术问题[J]. 重庆建筑大学学报, 2003, 25(2): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN200302014.htm

    SHEN Xi-zhong, LIU Long-bin, CHEN Min, et al. Key technical issues in project design of tall earth fill under abominable surroundings[J]. Journal of Chongqing Jianzhu University, 2003, 25(2): 67-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN200302014.htm
    [7]
    张继文, 于永堂, 李攀, 等. 黄土削峁填沟高填方地下水监测与分析[J]. 西安建筑科技大学学报(自然科学版), 2016, 48(4): 477-483. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201604004.htm

    ZHANG Ji-wen, YU Yong-tang, LI Pan, et al. Groundwater monitoring and analysis of high fill foundation in loess hilly-gully region[J]. Journal of Xi'an University of Architecture & Technology(Natural Science Edition), 2016, 48(4): 477-483. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201604004.htm
    [8]
    朱才辉, 李宁. 黄土高填方机场地基中暗穴扩展对道面变形分析[J]. 岩石力学与工程学报, 2015, 34(1): 198-206. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501022.htm

    ZHU Cai-hui, LI Ning. Analysis of airstrip deformation due to expansion of hidden cavities in loess filled high embankement[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 198-206. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501022.htm
    [9]
    TU X B, KWONG A K L, DAI F C, et al. Field monitoring of rainfall infiltration in a loess slope and analysis of failure mechanism of rainfall-induced landslides[J]. Engineering Geology, 2009, 105(1/2): 134-150.
    [10]
    黄雪峰, 陈正汉, 哈双, 等. 大厚度自重湿陷性黄土场地湿陷变形特征的大型现场浸水试验研究[J]. 岩土工程学报, 2006, 28(3): 382-389. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200603023.htm

    HUANG Xue-feng, CHEN Zheng-han, HA Shuang, et al. Large area field immersion test on characteristics of deformation of self weight collapse loess under overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 382-389. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200603023.htm
    [11]
    姚志华, 黄雪峰, 陈正汉, 等. 兰州地区大厚度自重湿陷性黄土场地浸水试验综合观测研究[J]. 岩土工程学报, 2012, 34(1): 65-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201003.htm

    YAO Zhi-hua, HUANG Xue-feng, CHEN Zheng-han, et al. Comprehensive soaking tests on self-weight collapse loess with heavy section in Lanzhou region[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 65-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201003.htm
    [12]
    赵彦旭. 压实黄土增湿变形的非饱和土力学研究[D]. 兰州: 兰州大学, 2010.

    ZHAO Yan-xu. Unsaturated Soil Mechanics Characteristics Compacted Loess Moistening Deformation[D]. Lanzhou: Lanzhou University, 2010. (in Chinese)
    [13]
    ZHOU Y F, THAM L G., YAN W M, et al. Laboratory study on soil behavior in loess slope subjected to infiltration[J]. Engineering Geology, 2014, 183: 31-38.
    [14]
    杨校辉, 朱彦鹏, 周勇, 等. 山区机场高填方边坡滑移过程时空监测与稳定性分析[J]. 岩石力学与工程学报, 2016, 35(增刊2): 3977-3990. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2059.htm

    YANG Xiao-hui, ZHU Yan-peng, ZHOU Yong, et al. Time-space monitoring and stability analysis of high fill slope slip process at a airport in mountain region[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 3977-3990. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2059.htm
    [15]
    WU L Z, ZHOU Y, SUN P, et al. Laboratory characterization of rainfall-induced loess slope failure[J]. Catena, 2017, 150: 1-8.
    [16]
    ZHANG Ga, WANG Rui, QIAN Jiyun, et al. Effect study of cracks on behavior of soil slope under rainfall conditions[J]. Soils and Foundations, 2012, 52(4): 634-643.
    [17]
    NORAMBUENA-CONTRERAS J, ARBAT G, GARCÍA NIETO P J, et al. Nonlinear numerical simulation of rainwater infiltration through road embankments by FEM[J]. Applied Mathematics and Computation, 2012, 219: 1843-1852.
    [18]
    梁燕, 赵桂娟, 谢永利, 等. 黄土增湿变形的数值模型[J]. 建筑科学与工程学报, 2007, 24(3): 43-46. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG200703011.htm

    LIANG Yan, ZHAO Gui-juan, XIE Yong-li, et al. Numerical model of loess moistening deformation[J]. Journal of Architecture and Civil Engineering, 2007, 24(3): 43-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG200703011.htm
    [19]
    吴文彪, 郑俊杰, 曹文昭. 考虑含水率影响的压实黄土路堤稳定性研究[J]. 岩土力学, 2015, 36(增刊1): 542-546. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1094.htm

    WU Wen-biao, ZHENG Jun-jie, CAO Wen-zhao. Study of stability of compacted loess embankment considering effect of water content[J]. Rock and Soil Mechanics, 2015, 36(S1): 542-546. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1094.htm
    [20]
    VAN Genuchten M. A closed form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    [21]
    FREDLUND D G, XING A. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(3): 521-532.
  • Related Articles

    [1]ZHENG Yingren, ZHANG Jinliang, YIN Dewen, SHAO Ying, SU Kai, WU Hao, ZHANG Zhipei. Critical sliding surface theorem and numerical solution method based on lower bound model[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 438-442. DOI: 10.11779/CJGE20230988
    [2]HU Wei, LIN Tianyu, LIN Zhi, FENG Shijin, IVAN Puig Damians. Experimental and theoretical studies on modeling of uplift bearing characteristics of screw anchors in sandy soil foundation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1582-1595. DOI: 10.11779/CJGE20230394
    [3]HU Wei, ZHANG Hanlin, MENG Jianwei, LIU Shunkai, NIE Zhihong. Normal pullout bearing characteristics of inclined strip anchor plate in sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1451-1460. DOI: 10.11779/CJGE20220474
    [4]YU Peng, HAO Qing-shuo, YU Jia-lin, WANG Xiang-nan, YU Yu-zhen. XFEM-based investigation on sliding regularities of soil slopes[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1416-1424. DOI: 10.11779/CJGE202208006
    [5]YU Lu, YANG Qing, ZHANG Jin-li, YANG Gang. Simplified model for upper bound method to analyze horizontal bearing capacity of torpedo anchors[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 773-781. DOI: 10.11779/CJGE202004022
    [6]JIA Cang-qin, HUANG Qi-wu, WANG Gui-he. Numerical upper bound limit analysis based on topology optimization considering soil-structure interaction[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 408-417. DOI: 10.11779/CJGE201803003
    [7]WANG Ming-min, WANG Gui-lin, WU Shu-guang. Limit analysis method for seismic active pressure on sheets between anti-slide piles[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2301-2307. DOI: 10.11779/CJGE201512021
    [8]LIN Hang, XIONG wei, LI Zheng-ming. Embedded program for slip surface by shear strain of slopes and parametric analysis[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 52-56.
    [9]HUANG Mao-song, SONG Chun-xia, LüXi-lin. Upper bound analysis for stability of a circular tunnel in heterogeneous clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1504-1512.
    [10]LI Tonglu, WANG Yanxia, DENG Hongke. An improved method for three-dimensional slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(5): 611-614.
  • Cited by

    Periodical cited type(1)

    1. 刘奇,牛家宝,李青海,赵金海,訾建潇. 采动覆岩裂隙演化的光纤监测耦合性及分带表征. 煤炭学报. 2024(03): 1345-1357 .

    Other cited types(2)

Catalog

    Article views (319) PDF downloads (273) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return