Citation: | XUE Luan-luan. Composite element algorithm of seepage-normal stress coupling for fractured rock masses with drainage holes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1429-1434. |
[1] |
LONG J C S, REMER J S, WILSON C R,et al. Porous media equivalents for networks of discontinuous fractures[J]. Water Resources Research, 1982, 18(3): 645-658.
HSIEH P A, NEUMAN S P. Field determination of the three-dimensional hydraulic conductivity tensor of anisotropic media - 1[J]. Theory Water Resources Research, 1985, 21(11): 1655-1665. ODA M. Permeability tensor for discontinuous rock masses[J]. Géotechnique, 1985, 35(4): 483-495. ODA M. An equivalent continuum model for coupled stress and fluid analysis in jointed rock masses[J]. Water Resources Research, 1986, 22(13): 1845-1856. 张有天. 岩石水力学与工程[M].北京:中国水利水电出版社, 2005.(ZHANG You-tian. Rock hydraulics and engineering[M].Beijing:China Water Power Press, 2005. (in Chinese)) 盛金昌, 速宝玉, 赵 坚, 等. 溪洛渡拱坝坝基渗流-应力耦合分析研究[J]. (岩土工程学报), 2001, 23(1): 104-108.(SHENG Jin-chang, SU Bao-yu, ZHAO Jian,et al. Coupled stress and fluid flow analysis of the arch dam foundation of Xiluodu Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 104-108. (in Chinese)) SCHWARTZ F W, SMITH W L, CROWE A S. A stochastic analysis of microscopic dispersion in fractured media[J]. Water Resources Research, 1983, 19(5): 1253-1265. DERSHOWITZ W S, EINSTEIN H H. Three-dimensional flow modeling in jointed rock masses[C]// Proc 6th Int Cong, ISRM. Montreal, 1987: 87-92. CACAS M C, LEDOUX B, MARSITY G De,et al. Modeling fracture flow with a stochastic discrete fracture network: calibration and validation, 1. The flow model[J]. Water Resources Research, 1990, 26(3): 479-489. ANDERSSON J, DVERSTORP B. Conditional simulation of fluid flow in three-dimensional networks of discrete fractures[J]. Water Resources Research, 1987, 23(10): 1876-1886. 朱伯芳. 渗流场中考虑排水孔作用的杂交元[J]. (水利学报), 1982(9): 32-41.(ZHU Bo-fang. The analysis of the effect of drainage holes in the seepage field by means of hybrid elements[J]. J Hydraul Eng, 1982(9): 32-41. (in Chinese)) CHEN S H, QIANG S. Composite element model for discontinuous rock masses[J]. Int J Rock Mech Min Sci & Geomech Abstr, 2004, 41(7): 865-870. CHEN S H, QIANG S, SHAHROUR I,et al. Composite element analysis of gravity dam on a complicated rock foundation[J]. ASCE International Journal of Geomechanics, 2008. CHEN S H, SHAHROUR I. Composite element method for the bolted discontinuous rock masses and its application[J]. International Journal of Rock Mechanics & Mining Sciences, 2008, 45(3): 384-396. CHEN S H, FENG X M, SHAHROUR I. Numerical estimation of REV and permeability tensor for fractured rock masses by composite element method[J]. Int J Numer Anal Meth Geomech, 2008, 32(12): 1459-1477. CHEN S H, XUE L L, XU G S,et al. Composite element method for the seepage analysis of rock masses containing fractures and drainage holes[J]. Int J Rock Mech Min Sci, 2010, 47(5): 762-770. 胡 静, 陈胜宏. 渗流分析中排水孔模拟的空气单元法[J]. (岩土力学), 2003, 24(2): 281-287.(HU Jing, CHEN Sheng-hong. Air element methad for modeling drainage holes in seepage analysis[J]. Rock and Soil Mechanics, 2003, 24(2): 281-287. (in Chinese)) 薛娈鸾, 陈胜宏. 岩石裂隙渗流与法向应力耦合的复合单元模型[J]. (岩石力学与工程学报), 2007, 26(增刊1): 2613-2619.(XUE Luan-luan, CHEN Sheng-hong. Composite element model of seepage-normal stress coupling for rock fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 2613-2619. (in Chinese)) 陈胜宏, 王鸿儒, 熊文林. 节理面渗流性质的探讨[J]. (武汉水利电力学院学报), 1989, 22(1): 53-60.(CHEN Sheng-hong, WANG Hong-ru, XIONG Wen-lin. Study of the seepage characteristics of joint surface[J]. Journal of Wuhan Univ of Hydr and Elec Eng, 1989, 22(1): 53-60. (in Chinese)) GOODMAN R E, TAYLOR R, BREKKE T L. A model for the mechanics of jointed rock[J]. J Soil Mech Found Div ASCE, 1968, 14(6): 37-59. |
[1] | YANG Chao, XUE Hai-bin, DANG Fa-ning, WANG hui. Mechanism and influence range of stress arching effect of CFRD in narrow valley regions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 214-218. DOI: 10.11779/CJGE2021S1039 |
[2] | ZHAO Yan-hai, YU Jin, ZHOU Chen-hua, ZHAO Kai, XIAO Huai-guang. Characterization of pressure arching effect of arch shell surrounding rock considering deviation of principal stress axis[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1842-1850. DOI: 10.11779/CJGE202110010 |
[3] | DAI Bei-bing, YANG Jun, LIU Feng-tao, LIN Kai-rong. Macro- and micro-properties and formation mechanisms of granular piles[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 57-60. DOI: 10.11779/CJGE2019S2015 |
[4] | SUN Shu-wei, WANG Wei, ZHU Ben-zhen. Bearing characteristics of prestressed sheet pile wall in embankment stablization[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1818-1825. DOI: 10.11779/CJGE201510010 |
[5] | YANG Tao, WANG Gang-gang, YAN Ye-qiang, LI Guo-wei. Shape of soil arching and development of its effect in a piled embankment[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 731-735. DOI: 10.11779/CJGE201404018 |
[6] | FAN Li-bin, ZHANG Ding-wen, LIU Song-yu. Comparision of calculating methods for stress of soil arching effect of piled embankments[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 1155-1158. |
[7] | WANG Mei, LI Jing-pei. New method for active earth pressure of rigid retaining walls considering arching effect[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 865-870. |
[8] | ZOU Yang, LI Xi-bing, ZHOU Zi-long, YIN Tu-bing, YIN Zhi-qiang. Energy evolution and stress redistribution of high-stress rock mass under excavation distribution[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1677-1684. |
[9] | LU De-chun, CAO Sheng-tao, DU Xiu-li, ZHANG Pei. Soil arching effect under plane strain condition[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 454-458. |
[10] | YING Hongwei, JIANG Bo, XIE Kanghe. Distribution of active earth pressure against retaining walls considering arching effects[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 717-722. |
1. |
卢小雨,李直勇,董春亮,谢雅,张博文,郝建平. 不同夹角与厚度交叉裂隙类岩体蠕变力学性能及损伤破坏. 水利水电技术(中英文). 2025(02): 216-231 .
![]() | |
2. |
宋岳,柳滔,余俊爽. 基于PFC~(2D)的砂岩直剪试验尺寸效应数值模拟研究. 水力发电. 2025(04): 18-24 .
![]() | |
3. |
李盛南,刘新喜,李玉,王玮玮,周炎明. 炭质泥岩渐进破坏过程的变形特性及损伤演化研究. 中国公路学报. 2022(04): 99-107 .
![]() | |
4. |
王璐. 二次损伤岩石的蠕变研究综述. 工程技术研究. 2022(07): 39-42 .
![]() | |
5. |
陶伟,叶唐进,张文海,王潇宇,刘丛丛. 含裂隙类岩石单轴压缩疲劳性能试验研究. 岩土工程技术. 2022(05): 389-394 .
![]() | |
6. |
刁杨龙,洛锋,李盟,吕振,续培东,郭钇君. 裂隙岩体细观裂纹演化机制及局部力学特性研究. 煤炭与化工. 2021(09): 22-26 .
![]() | |
7. |
薛永明,单启伟,戴兵,贺桂成,王程程,吴文渊,陈英. 不同损伤程度花岗岩在冲击荷载作用下的动态力学特性. 有色金属工程. 2020(03): 54-61 .
![]() | |
8. |
王程程,罗鑫尧,陈科旭,戴兵,贺桂成. 含预制裂隙类岩石裂隙演化与破裂特征的试验研究. 黄金科学技术. 2020(03): 421-429 .
![]() | |
9. |
孙闯,敖云鹤,张家鸣,王帅. 花岗岩细观破裂特征及宏观尺度效应的颗粒流研究. 岩土工程学报. 2020(09): 1687-1695 .
![]() | |
10. |
周慧颖,李树忱,李阳,马鹏飞. V形裂隙类岩石材料单轴压缩光弹性试验. 科学技术与工程. 2020(25): 10415-10421 .
![]() | |
11. |
尤明庆. 岩石的损伤、黏结和摩擦特性研究. 岩土工程学报. 2019(03): 554-560 .
![]() | |
12. |
冯春迪,黄仁东. 红砂岩中矿物颗粒的塑性应变分析. 黄金科学技术. 2019(04): 557-564 .
![]() | |
13. |
王超,刘长武,刘德峰. 单轴压缩下饱水裂隙砂岩体积效应的试验研究. 地下空间与工程学报. 2019(05): 1331-1340 .
![]() | |
14. |
平琦,张号,苏海鹏. 不同长度石灰岩动态压缩力学性质试验研究. 岩石力学与工程学报. 2018(S2): 3891-3897 .
![]() |