• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XUE Luan-luan. Composite element algorithm of seepage-normal stress coupling for fractured rock masses with drainage holes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1429-1434.
Citation: XUE Luan-luan. Composite element algorithm of seepage-normal stress coupling for fractured rock masses with drainage holes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1429-1434.

Composite element algorithm of seepage-normal stress coupling for fractured rock masses with drainage holes

More Information
  • Received Date: October 07, 2012
  • Published Date: August 19, 2013
  • A composite element algorithm of seepage-normal stress coupling for fractured rock masses with drainage holes is proposed. The coupling relation between fracture seepage and normal stress makes use of “air element” and “filled model”, which regards the drainage holes and fractures as “filled media” with high porosity. The existence of the drainage holes and fractures is not considered in the mesh generation, but it will be considered explicitly in the mapping composite element by means of the composite element pre-processing work program. The computational mesh generation is simple without restriction. Based on the composite element method, the seepage-normal stress coupling is achieved by applying the cross iterative algorithm. The proposed algorithm considers the flows in the drainage holes and fractures and the flow exchange between the drainage holes and fractures and the adjacent rock masses. The verification of the proposed algorithm is conducted through a simple numerical example, from which the advantages and the reliability of the proposed algorithm are illustrated.
  • [1]
    LONG J C S, REMER J S, WILSON C R,et al. Porous media equivalents for networks of discontinuous fractures[J]. Water Resources Research, 1982, 18(3): 645-658.
    HSIEH P A, NEUMAN S P. Field determination of the three-dimensional hydraulic conductivity tensor of anisotropic media - 1[J]. Theory Water Resources Research, 1985, 21(11): 1655-1665.
    ODA M. Permeability tensor for discontinuous rock masses[J]. Géotechnique, 1985, 35(4): 483-495.
    ODA M. An equivalent continuum model for coupled stress and fluid analysis in jointed rock masses[J]. Water Resources Research, 1986, 22(13): 1845-1856.
    张有天. 岩石水力学与工程[M].北京:中国水利水电出版社, 2005.(ZHANG You-tian. Rock hydraulics and engineering[M].Beijing:China Water Power Press, 2005. (in Chinese))
    盛金昌, 速宝玉, 赵 坚, 等. 溪洛渡拱坝坝基渗流-应力耦合分析研究[J]. (岩土工程学报), 2001, 23(1): 104-108.(SHENG Jin-chang, SU Bao-yu, ZHAO Jian,et al. Coupled stress and fluid flow analysis of the arch dam foundation of Xiluodu Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 104-108. (in Chinese))
    SCHWARTZ F W, SMITH W L, CROWE A S. A stochastic analysis of microscopic dispersion in fractured media[J]. Water Resources Research, 1983, 19(5): 1253-1265.
    DERSHOWITZ W S, EINSTEIN H H. Three-dimensional flow modeling in jointed rock masses[C]// Proc 6th Int Cong, ISRM. Montreal, 1987: 87-92.
    CACAS M C, LEDOUX B, MARSITY G De,et al. Modeling fracture flow with a stochastic discrete fracture network: calibration and validation, 1. The flow model[J]. Water Resources Research, 1990, 26(3): 479-489.
    ANDERSSON J, DVERSTORP B. Conditional simulation of fluid flow in three-dimensional networks of discrete fractures[J]. Water Resources Research, 1987, 23(10): 1876-1886.
    朱伯芳. 渗流场中考虑排水孔作用的杂交元[J]. (水利学报), 1982(9): 32-41.(ZHU Bo-fang. The analysis of the effect of drainage holes in the seepage field by means of hybrid elements[J]. J Hydraul Eng, 1982(9): 32-41. (in Chinese))
    CHEN S H, QIANG S. Composite element model for discontinuous rock masses[J]. Int J Rock Mech Min Sci & Geomech Abstr, 2004, 41(7): 865-870.
    CHEN S H, QIANG S, SHAHROUR I,et al. Composite element analysis of gravity dam on a complicated rock foundation[J]. ASCE International Journal of Geomechanics, 2008.
    CHEN S H, SHAHROUR I. Composite element method for the bolted discontinuous rock masses and its application[J]. International Journal of Rock Mechanics & Mining Sciences, 2008, 45(3): 384-396.
    CHEN S H, FENG X M, SHAHROUR I. Numerical estimation of REV and permeability tensor for fractured rock masses by composite element method[J]. Int J Numer Anal Meth Geomech, 2008, 32(12): 1459-1477.
    CHEN S H, XUE L L, XU G S,et al. Composite element method for the seepage analysis of rock masses containing fractures and drainage holes[J]. Int J Rock Mech Min Sci, 2010, 47(5): 762-770.
    胡 静, 陈胜宏. 渗流分析中排水孔模拟的空气单元法[J]. (岩土力学), 2003, 24(2): 281-287.(HU Jing, CHEN Sheng-hong. Air element methad for modeling drainage holes in seepage analysis[J]. Rock and Soil Mechanics, 2003, 24(2): 281-287. (in Chinese))
    薛娈鸾, 陈胜宏. 岩石裂隙渗流与法向应力耦合的复合单元模型[J]. (岩石力学与工程学报), 2007, 26(增刊1): 2613-2619.(XUE Luan-luan, CHEN Sheng-hong. Composite element model of seepage-normal stress coupling for rock fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 2613-2619. (in Chinese))
    陈胜宏, 王鸿儒, 熊文林. 节理面渗流性质的探讨[J]. (武汉水利电力学院学报), 1989, 22(1): 53-60.(CHEN Sheng-hong, WANG Hong-ru, XIONG Wen-lin. Study of the seepage characteristics of joint surface[J]. Journal of Wuhan Univ of Hydr and Elec Eng, 1989, 22(1): 53-60. (in Chinese))
    GOODMAN R E, TAYLOR R, BREKKE T L. A model for the mechanics of jointed rock[J]. J Soil Mech Found Div ASCE, 1968, 14(6): 37-59.
  • Related Articles

    [1]YANG Chao, XUE Hai-bin, DANG Fa-ning, WANG hui. Mechanism and influence range of stress arching effect of CFRD in narrow valley regions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 214-218. DOI: 10.11779/CJGE2021S1039
    [2]ZHAO Yan-hai, YU Jin, ZHOU Chen-hua, ZHAO Kai, XIAO Huai-guang. Characterization of pressure arching effect of arch shell surrounding rock considering deviation of principal stress axis[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1842-1850. DOI: 10.11779/CJGE202110010
    [3]DAI Bei-bing, YANG Jun, LIU Feng-tao, LIN Kai-rong. Macro- and micro-properties and formation mechanisms of granular piles[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 57-60. DOI: 10.11779/CJGE2019S2015
    [4]SUN Shu-wei, WANG Wei, ZHU Ben-zhen. Bearing characteristics of prestressed sheet pile wall in embankment stablization[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1818-1825. DOI: 10.11779/CJGE201510010
    [5]YANG Tao, WANG Gang-gang, YAN Ye-qiang, LI Guo-wei. Shape of soil arching and development of its effect in a piled embankment[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 731-735. DOI: 10.11779/CJGE201404018
    [6]FAN Li-bin, ZHANG Ding-wen, LIU Song-yu. Comparision of calculating methods for stress of soil arching effect of piled embankments[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 1155-1158.
    [7]WANG Mei, LI Jing-pei. New method for active earth pressure of rigid retaining walls considering arching effect[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 865-870.
    [8]ZOU Yang, LI Xi-bing, ZHOU Zi-long, YIN Tu-bing, YIN Zhi-qiang. Energy evolution and stress redistribution of high-stress rock mass under excavation distribution[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1677-1684.
    [9]LU De-chun, CAO Sheng-tao, DU Xiu-li, ZHANG Pei. Soil arching effect under plane strain condition[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 454-458.
    [10]YING Hongwei, JIANG Bo, XIE Kanghe. Distribution of active earth pressure against retaining walls considering arching effects[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 717-722.
  • Cited by

    Periodical cited type(14)

    1. 卢小雨,李直勇,董春亮,谢雅,张博文,郝建平. 不同夹角与厚度交叉裂隙类岩体蠕变力学性能及损伤破坏. 水利水电技术(中英文). 2025(02): 216-231 .
    2. 宋岳,柳滔,余俊爽. 基于PFC~(2D)的砂岩直剪试验尺寸效应数值模拟研究. 水力发电. 2025(04): 18-24 .
    3. 李盛南,刘新喜,李玉,王玮玮,周炎明. 炭质泥岩渐进破坏过程的变形特性及损伤演化研究. 中国公路学报. 2022(04): 99-107 .
    4. 王璐. 二次损伤岩石的蠕变研究综述. 工程技术研究. 2022(07): 39-42 .
    5. 陶伟,叶唐进,张文海,王潇宇,刘丛丛. 含裂隙类岩石单轴压缩疲劳性能试验研究. 岩土工程技术. 2022(05): 389-394 .
    6. 刁杨龙,洛锋,李盟,吕振,续培东,郭钇君. 裂隙岩体细观裂纹演化机制及局部力学特性研究. 煤炭与化工. 2021(09): 22-26 .
    7. 薛永明,单启伟,戴兵,贺桂成,王程程,吴文渊,陈英. 不同损伤程度花岗岩在冲击荷载作用下的动态力学特性. 有色金属工程. 2020(03): 54-61 .
    8. 王程程,罗鑫尧,陈科旭,戴兵,贺桂成. 含预制裂隙类岩石裂隙演化与破裂特征的试验研究. 黄金科学技术. 2020(03): 421-429 .
    9. 孙闯,敖云鹤,张家鸣,王帅. 花岗岩细观破裂特征及宏观尺度效应的颗粒流研究. 岩土工程学报. 2020(09): 1687-1695 . 本站查看
    10. 周慧颖,李树忱,李阳,马鹏飞. V形裂隙类岩石材料单轴压缩光弹性试验. 科学技术与工程. 2020(25): 10415-10421 .
    11. 尤明庆. 岩石的损伤、黏结和摩擦特性研究. 岩土工程学报. 2019(03): 554-560 . 本站查看
    12. 冯春迪,黄仁东. 红砂岩中矿物颗粒的塑性应变分析. 黄金科学技术. 2019(04): 557-564 .
    13. 王超,刘长武,刘德峰. 单轴压缩下饱水裂隙砂岩体积效应的试验研究. 地下空间与工程学报. 2019(05): 1331-1340 .
    14. 平琦,张号,苏海鹏. 不同长度石灰岩动态压缩力学性质试验研究. 岩石力学与工程学报. 2018(S2): 3891-3897 .

    Other cited types(18)

Catalog

    Article views PDF downloads Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return