• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YAN Chang-bin, WANG He-jian, ZHOU Jian-jun, YANG Feng-wei, PENG Wan-jun. Prediction of TBM advance rate based on Bootstrap method and SVR-ANN algorithm[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1078-1087. DOI: 10.11779/CJGE202106011
Citation: YAN Chang-bin, WANG He-jian, ZHOU Jian-jun, YANG Feng-wei, PENG Wan-jun. Prediction of TBM advance rate based on Bootstrap method and SVR-ANN algorithm[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1078-1087. DOI: 10.11779/CJGE202106011

Prediction of TBM advance rate based on Bootstrap method and SVR-ANN algorithm

More Information
  • Received Date: July 21, 2020
  • Available Online: December 02, 2022
  • The reasonable prediction and evaluation of advance rate is related to the success and benefit of TBM construction. The existing prediction models for TBM advance rate mostly use parameters of rock mass and TBM tunneling to predict the instantaneous/average advance rate. To solve the problem that these models do not consider the influences of uncertainty and risk during TBM tunneling process, a prediction model for TBM advance rate based on the Bootstrap method and SVR-ANN algorithm is proposed by introducing the idea of interval prediction. Based on the project of Lanzhou water sources water conveyance tunnel constructed by double-shield TBM, the shortcomings of some single input parameters are analyzed, and the rationality of two selected comprehensive parameters, namely rock mass quality classification index (RMR) and TBM working condition class (TWCR), is pointed out. In addition, the validity of the developed interval prediction model for TBM advance rate is verified. The results show that the developed interval prediction model for TBM advance rate provides relatively accurate point prediction results and constructs a clear and reliable AR prediction interval to cover the actual TBM advance rate completely. The MPIW of model test set at confidence levels of 90% and 95% is 9.84, 11.73 m/d, respectively. With the improvement of the confidence level, the uncertainty that can be contained in the prediction interval also increases. Moreover, the possible risk of TBM tunneling process and the abnormal interval width confirm each other, which verifies that the interval prediction model can quantitatively explain the characteristics of uncertainty in the construction process. The research results may provide a new idea for the forecasting of TBM tunneling efficiency, the estimation of construction schedule as well as the optimization of tunneling parameters.
  • [1]
    王梦恕. 岩石隧道掘进机(TBM)施工及工程实例[M]. 北京: 中国铁道出版社, 2004.

    WANG Meng-shu. Rock Tunnel Boring Machine (TBM) and Engineering Projects[M]. Beijing: China Railway Publishing House, 2004. (in Chinese)
    [2]
    BRULAND A. Hard Rock Tunnel Boring[D]. Trondheim: Norwegian University of Science and Technology, 1998.
    [3]
    BARTON N. TBM Tunnelling in Jointed and Faulted Rock[M]. Boca Raton: CRC Press, 2000: 170-175.
    [4]
    BENARDOS A G, KALIAMPAKOS D C. Modelling TBM performance with artificial neural networks[J]. Tunnelling and Underground Space Technology, 2004, 19(6): 597-605. doi: 10.1016/j.tust.2004.02.128
    [5]
    GRIMA M A, BRUINES P A, VERHOEF P N W. Modeling tunnel boring machine performance by neuro-fuzzy methods[J]. Tunnelling and Underground Space Technology, 2000, 15(4): 501. doi: 10.1016/S0886-7798(01)00022-0
    [6]
    ZHOU J, BEJARBANEH B Y, ARMAGHANI D J, et al. Forecasting of TBM advance rate in hard rock condition based on artificial neural network and genetic programming echniques[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(4): 2069-2084. doi: 10.1007/s10064-019-01626-8
    [7]
    蒋朝辉, 董梦林, 桂卫华, 等. 基于Bootstrap 的高炉铁水硅含量二维预报[J]. 自动化学报, 2016, 42(5): 715-723. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201605011.htm

    JIANG Zhao-hui, DONG Meng-lin, GUI Wei-hua, et al. Two-dimensional prediction for silicon content of hot metal of blast furnace based on bootstrap[J]. Acta Automatica Sinica, 2016, 42(5): 715-723. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201605011.htm
    [8]
    EFRON B. Bootstrap methods: another look at the jackknife[J]. Annals of Statistics, 1979, 7(1): 1-26.
    [9]
    LI D, TANG X, PHOON K. Bootstrap method for characterizing the effect of uncertainty in shear strength parameters on slope reliability[J]. Reliability Engineering and System Safety, 2015, 140: 99-106. doi: 10.1016/j.ress.2015.03.034
    [10]
    WAN C, XU Z, WANG Y, et al. A hybrid approach for probabilistic forecasting of electricity price[J]. IEEE Transactions on Smart Grid, 2014, 5(1): 463-470. doi: 10.1109/TSG.2013.2274465
    [11]
    MA J, TANG H, LIU X, et al. Probabilistic forecasting of landslide displacement accounting for epistemic uncertainty: a case study in the Three Gorges Reservoir area, China[J]. Landslides, 2018, 15(6): 1145-1153. doi: 10.1007/s10346-017-0941-5
    [12]
    李麟玮, 吴益平, 苗发盛, 等. 基于不同Bootstrap 方法和KELM-BPNN 模型的滑坡位移区间预测[J]. 岩石力学与工程学报, 2019, 38(5): 912-926. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201905006.htm

    LI Lin-wei, WU Yi-ping, MIAO Fa-sheng, et al. Landslide displacement interval prediction based on different Bootstrap methods and KELM-BPNN model[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(5): 912-926. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201905006.htm
    [13]
    孙东磊, 王艳, 于一潇, 等. 基于BP 神经网络的短期光伏集群功率区间预测[J]. 山东大学学报(工学版), 2020, 50(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY202005011.htm

    SUN Dong-lei, WANG Yan, YU Yi-xiao. Interval Prediction of short-term regional photovoltaic power based on BP neural network[J]. Journal of Shandong University (English Science), 2020, 50(4): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY202005011.htm
    [14]
    龙志和, 欧变玲. Bootstrap 方法在经济计量领域的应用[J]. 工业技术经济, 2008, 27(7): 132-135. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZJ200807038.htm

    LONG Zhi-he, OU Bian-ling. Bootstrap method in econometric applications[J]. Industrial Technology and Economy, 2008, 27(7): 132-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GHZJ200807038.htm
    [15]
    PRADHAN B. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS[J]. Computers & Geosciences, 2013, 51: 350-365. doi: 10.3969/j.issn.1001-3695.2013.02.007
    [16]
    郭卫新, 杨继华, 齐三红, 等. 花岗岩地层双护盾TBM 卡机原因分析及处理措施[J]. 资源环境与工程, 2017, 31(5): 610-613. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201705022.htm

    GUO Wei-xin, YANG Ji-hua, QI San-hong. Cause analysis and treatment measures of double shield TBM blocked in granite stratum[J]. Resources Environment & Engineering, 2017, 31(5): 610-613. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201705022.htm
    [17]
    刘泉声, 刘建平, 潘玉丛, 等. 硬岩隧道掘进机性能预测模型研究进展[J]. 岩石力学与工程学报, 2016, 35(增刊1): 2767-2786. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1021.htm

    LIU Quan-sheng, LIU Jian-ping, PAN Yu-cong, et al. Research advances of tunnel boring machine performance prediction models for hard rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 2767-2786. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1021.htm
    [18]
    杨媛媛, 黄宏伟. 围岩分类在TBM滚刀寿命预测中的应用[J]. 地下空间与工程学报, 2005, 1(5): 721-724. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200505015.htm

    YANG Yuan-yuan, HUANG Hong-wei. Application of rock mass classification in cutter life prediction of TBM[J]. Chinese Journal of Underground Space and Engineering, 2005, 1(5): 721-724. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200505015.htm
    [19]
    ZIO E. A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient processes[J]. IEEE Transactions on Nuclear Science, 2006, 53(3): 1460-1478. doi: 10.1109/TNS.2006.871662
  • Related Articles

    [1]HAN Zhong, ZHANG Lin, DING Luqiang, ZOU Weilie, FENG Huaiping, YING Zhenqian. Soil-water characteristics and dynamic responses of compacted clay under different moisture and temperature paths[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2591-2601. DOI: 10.11779/CJGE20230902
    [2]Soil-water characteristic curve model considering grain size gradation and deformation of soil[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240339
    [3]LIU Yan, YU Jian-tao. Hysteresis model for soil-water characteristic curve under dynamic conditions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 62-68. DOI: 10.11779/CJGE202101007
    [4]CAI Guo-qing, HAN Bo-wen, YANG Yu, LIU Yi, ZHAO Cheng-gang. Experimental study on soil-water characteristic curves of sandy loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 11-15. DOI: 10.11779/CJGE2020S1003
    [5]HAN Bo-wen, CAI Guo-qing, LI Jian, ZHAO Cheng-gang. Hydro-mechanical coupling bounding surface model for unsaturated soils considering bonding effect of particles[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2059-2068. DOI: 10.11779/CJGE202011011
    [6]CAI Guo-qing, LIU Yi, XU Run-ze, LI Jian, ZHAO Cheng-gang. Experimental investigation for soil-water characteristic curve of red clay in full suction range[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 13-16. DOI: 10.11779/CJGE2019S2004
    [7]WANG Xiao-qi, WANG Shi-ji, CHENG Ming-shu, LI Xian, ZHOU Chao-yun, HE Bing-hui. Experimental study on soil-water characteristic curve of expensive soil considering net normal stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 235-240. DOI: 10.11779/CJGE2018S1038
    [8]TAO Gao-liang, KONG Ling-wei. Prediction of air-entry value and soil-water characteristic curve of soils with different initial void ratios[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 34-38. DOI: 10.11779/CJGE2018S1006
    [9]TANG Dong, QI Xiao-hui, JIANG Shui-hua, LI Dian-qing. Effect of different antecedent rainfalls and SWCCs on slope stability[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 148-155. DOI: 10.11779/CJGE2015S1029
    [10]LIU Yan, ZHAO Chenggang. Hysteresis model for soil-water characteristic curves[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 399-405.
  • Cited by

    Periodical cited type(8)

    1. 介玉新. Rowe剪胀方程及一种新的推导方法. 水力发电学报. 2024(01): 109-123 .
    2. 蔡新合,陈子玉,李国英. 考虑颗粒破碎能耗的堆石料剪胀方程及其应用. 水利水运工程学报. 2024(03): 127-135 .
    3. 王步雪岩,孟庆山,钱建固. 基于体积变化的珊瑚砂砾破碎率研究. 岩土力学. 2024(07): 1967-1975 .
    4. 蔡新合,朱雨萌,李国英. 基于广义塑性理论框架的堆石料变形计算. 水利水运工程学报. 2024(04): 127-139 .
    5. 程诗芸,彭杨旭,张紫怡,郝晨曦,丰家俊,郭鸿. 土颗粒破碎机理的研究进展. 安徽建筑. 2023(01): 141-143 .
    6. 王柳江,刘啸宇,刘斯宏,扎西顿珠,沈超敏. 改进hhu-SH模型及其在面板堆石坝工程中的应用. 河海大学学报(自然科学版). 2023(02): 64-72 .
    7. 陈榕,武智勇,郝冬雪,高宇聪. 高应力下石英砂三轴剪切颗粒破碎演化规律及影响. 岩土工程学报. 2023(08): 1713-1722 . 本站查看
    8. 迟世春,郭宇,马锡钰,贾宇峰. 颗粒流变破碎与堆石料流变应变计算. 水力发电. 2023(10): 77-84+91 .

    Other cited types(8)

Catalog

    Article views (300) PDF downloads (167) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return