Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HAN Bo-wen, CAI Guo-qing, LI Jian, ZHAO Cheng-gang. Hydro-mechanical coupling bounding surface model for unsaturated soils considering bonding effect of particles[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2059-2068. DOI: 10.11779/CJGE202011011
Citation: HAN Bo-wen, CAI Guo-qing, LI Jian, ZHAO Cheng-gang. Hydro-mechanical coupling bounding surface model for unsaturated soils considering bonding effect of particles[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2059-2068. DOI: 10.11779/CJGE202011011

Hydro-mechanical coupling bounding surface model for unsaturated soils considering bonding effect of particles

More Information
  • Received Date: February 08, 2020
  • Available Online: December 05, 2022
  • The interparticle bonding effect has a significant influence on the hydro-mechanical coupling characteristics of unsaturated soils. Establishing a constitutive model for unsaturated soils considering the bonding effect is of great significance for accurately analyzing their hydro-mechanical coupling characteristics. Based on the theory of bounding surface plasticity, a hydro-mechanical coupling model for unsaturated soils considering the influences of matric suction, degree of saturation and pore structure on the bonding effect is established. For the mechanics part, the effective stress and bonding variable are selected as the constitutive variables, the relationship between the bonding variable and e/es is established, and the deformation characteristics of unsaturated soils are described based on the theory of bounding surface plasticity. For the hydraulic part, a hydraulic hysteresis soil-water characteristic curve equation considering the effect of deformation is established. The experimental results of bentonite-kaolin mixture and reconstituted kaolin are used for parameter calibration and model verification of the proposed model. The results show that the proposed model can reasonably predict the hydro-mechanical coupling characteristics of unsaturated soils.
  • [1]
    GALLIPOLI D, GENS A, SHARMA R, et al. An elasto-plastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behaviour[J]. Géotechnique, 2003, 53(1): 123-135. doi: 10.1680/geot.2003.53.1.123
    [2]
    邵龙潭, 郭晓霞, 郑国锋. 粒间应力、土骨架应力和有效应力[J]. 岩土工程学报, 2015, 37(8): 1478-1483. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201508022.htm

    SHAO Long-tan, GUO Xiao-xia, ZHENG Guo-feng. Intergranular stress, soil skeleton stress and effective stress[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1478-1483. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201508022.htm
    [3]
    BISHOP A W. The principle of effective stress[J]. Teknisk Ukeblad, 1959, 106(39): 859-863.
    [4]
    ALONSO E E, GENS A, JOSA A. Constitutive model for partially saturated soils[J]. Géotechnique, 1990, 40(3): 405-430. doi: 10.1680/geot.1990.40.3.405
    [5]
    FREDLUND D G, MORGENSTERN N R. Stress state variables for unsaturated soils[J]. Journal of Geotechnical and Geoenviromnental Engineering, 1977, 103(5): 447-466.
    [6]
    沈珠江. 广义吸力和非饱和土的统一变形理论[J]. 岩土工程学报, 1996, 18(2): 1-9. doi: 10.3321/j.issn:1000-4548.1996.02.001

    SHEN Zhu-jiang. Generalized suctions and unified deformation theory for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(2): 1-9. (in Chinese) doi: 10.3321/j.issn:1000-4548.1996.02.001
    [7]
    汤连生, 王思敬. 湿吸力及非饱和土的有效应力原理探讨[J]. 岩土工程学报, 2000, 22(1): 83-88. doi: 10.3321/j.issn:1000-4548.2000.01.015

    TANG Lian-sheng, WANG Si-jing. Absorbed suction and principle of effective stress in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 83-88. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.01.015
    [8]
    WHEELER S J, SHARMA R J, BUISSON M S R. Coupling of hydraulic hysteresis and stress-strain behaviour in unsaturated soils[J]. Géotechnique, 2003, 53(1): 41-54. doi: 10.1680/geot.2003.53.1.41
    [9]
    孙德安. 非饱和土的水力和力学特性及其弹塑性描述[J]. 岩土力学, 2009, 30(11): 3217-3231. doi: 10.3969/j.issn.1000-7598.2009.11.001

    SUN De-an. Hydro-mechanical behaviours of unsaturated soils and their elastoplastic modelling[J]. Rock and Soil Mechanics, 2009, 30(11): 3217-3231. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.11.001
    [10]
    ZHOU A N, SHENG D, SLOAN S W, et al. Interpretation of unsaturated soil behaviour in the stress-Saturation space, I: volume change and water retention behaviour[J]. Computers and Geotechnics, 2012, 43: 178-187. doi: 10.1016/j.compgeo.2012.04.010
    [11]
    HU R, LIU H H, CHEN Y, et al. A constitutive model for unsaturated soils with consideration of inter-particle bonding[J]. Computers and Geotechnics, 2014, 59: 127-144. doi: 10.1016/j.compgeo.2014.03.007
    [12]
    MA T T, WEI C F, XIA X L, et al. Constitutive model of unsaturated soils considering the effect of intergranular physicochemical forces[J]. Journal of Engineering Mechanics. 2016, 142(11): 04016088. doi: 10.1061/(ASCE)EM.1943-7889.0001146
    [13]
    ALONSO E E, PEREIRA J M, VAUNAT J, et al. A microstructurally based effective stress for unsaturated soils[J]. Géotechnique, 2010, 60(12): 913-925. doi: 10.1680/geot.8.P.002
    [14]
    蔡国庆, 王亚南, 周安楠, 等. 考虑微观孔隙结构的非饱和土水-力耦合本构模型[J]. 岩土工程学报, 2018, 40(4): 618-624. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804008.htm

    CAI Guo-qing, WANG Ya-nan, ZHOU An-nan, et al. A microstructure-dependent hydro-mechanical coupled constitutive model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 618-624. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804008.htm
    [15]
    陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2): 201-272. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402002.htm

    CHEN Zheng-han. On basic theories of unsaturated soils and special soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201-272. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402002.htm
    [16]
    DAFALIAS Y F, HERRMANN L R. Bouding surface formulation of soil plasticity[C]//Soil Mechanics-Transient and Cyclic Loads, 1982, New Yor.
    [17]
    杨杰, 尹振宇, 黄宏伟, 等. 基于扰动状态概念硬化参量的结构性黏土边界面模型[J]. 岩土工程学报, 2017, 39(3): 554-561. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201703028.htm

    YANG Jie, YIN Zhen-yu, HUANG Hong-wei, et al. Bounding surface plasticity model for structured clays using disturbed state concept-based hardening variables[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 554-561. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201703028.htm
    [18]
    张卫华, 赵成刚, 傅方. 饱和砂土相变状态边界面本构模型[J]. 岩土工程学报, 2013, 35(5): 930-939. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305022.htm

    ZHANG Wei-hua, ZHAO Cheng-gang, FU Fang. Bounding-surface constitutive model for saturated sands based on phase transformation state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 930-939. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305022.htm
    [19]
    黄茂松, 杨超, 崔玉军. 循环荷载下非饱和结构性土的边界面模型[J]. 岩土工程学报, 2009, 31(6): 817-823. doi: 10.3321/j.issn:1000-4548.2009.06.001

    HUANG Mao-song, YANG Chao, CUI Yu-jun. Elasto- plastic bounding surface model for unsaturated soils under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 817-823. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.06.001
    [20]
    李舰, 赵成刚, 刘艳, 等. 适用于膨胀性非饱和土的边界面模型的数值实现[J]. 岩石力学与工程学报, 2017, 36(10): 2551-2562. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201710024.htm

    LI Jian, ZHAO Cheng-gang, LIU Yan, et al. Numerical implementation of a bounding surface model for unsaturated expansive clays[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2551-2562. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201710024.htm
    [21]
    RUSSELL A R, KHALILI N. A unified boundig surface plasticity model for unsaturated soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30: 181-212.
    [22]
    FISHER R A. On the capillary forces in an ideal soil: correction of formulae given by W B Haines[J]. The Journal of Agricultural Science, 1926, 16(3): 492-505.
    [23]
    GALLIPOLI D, GENS A, CHEN G J, D'ONZA F. Modelling unsaturated soil behaviour during normal consolidation and at critical state[J]. Computers and Geotechnics, 2008, 35: 825-834.
    [24]
    BARDET J P. Bounding surface plasticity model for sands[J]. Journal of Engineering Mechanics, 1986, 112: 1198-1217.
    [25]
    ZIENKIEWICZ O C, LEUNG K H, PASTOR M. Simple model for transient soil loading in earthquake analysis: I Basic model and its application[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1985, 9: 453-476.
    [26]
    GALLIPOLI D, WHEELER S J, KARSTUNEN M. Modelling the variation of degree of saturation in a deformable unsaturated soil[J]. Géotechnique, 2003, 53(1): 105-112.
    [27]
    GALLIPOLI D. A hysteretic soil-water retention model accounting for cyclic variations of suction and void ratio[J]. Géotechnique, 2012, 62(7): 605-616.
    [28]
    HU R, CHEN Y F, LIU H H, et al. A water retention curve and unsaturated hydraulic conductivity model for deformable soils: consideration of the change in pore-size distribution[J]. Géotechnique, 2013, 63(16): 1389-1405.
    [29]
    蔡国庆, 田京京, 李舰, 等. 考虑变形及滞回效应影响的三维土-水特征曲面模型[J]. 土木工程学报, 2019, 52(11): 97-107. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201911011.htm

    CAI Guo-qing, TIAN Jing-jing, LI Jian, et al. A three-dimensional soil water characteristic surface model considering deformation and hysteresis effect[J]. China Civil Engineering Journal, 2019, 52(11): 97-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201911011.htm
    [30]
    VAN Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44: 892-898.
    [31]
    WEI C F, DEWOOLKAR M M. Formulation of capillary hysteresis with internal state variables[J]. Water Resources Research, 2006, 42: W07405.
    [32]
    HU R, CHEN Y F, LIU H H, et al. A coupled stress-strain and hydraulic hysteresis model for unsaturated soils: Thermodynamic analysis and model evaluation[J]. Computers and Geotechnics, 2015, 63: 159-170.
    [33]
    SHARMA R S. Mechanical Behaviour of Unsaturated Highly Expansive Clays[D]. Glasgow: University of Oxford, 1998.
    [34]
    SIVAKUMAR V. A Critical State Framework for Unsaturated Soil[D]. Glasgow: University of Sheffield, 1993.
    [35]
    GALLIPOLI D. Constitutive and Numerical Modelling of Unsaturated Soils[D]. Glasgow: University of Glasgow, 2000.
  • Related Articles

    [1]FEI Suo-zhu, TAN Xiao-hui, DONG Xiao-le, ZHA Fu-sheng, XU Long. Prediction of soil-water characteristic curve based on pore size distribution of soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1691-1699. DOI: 10.11779/CJGE202109014
    [2]MA Dong-dong, MA Qin-yong, HUANG Kun, ZHANG Rong-rong. Pore structure and dynamic mechanical properties of geopolymer cement soil based on nuclear magnetic resonance technique[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 572-578. DOI: 10.11779/CJGE202103021
    [3]ZHANG Wen-jie, CHEN Lu, YAN Hong-gang. Water retention characteristics and pore size distribution of landfilled municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1491-1497. DOI: 10.11779/CJGE201808015
    [4]XU Jie, ZHAO Wen-bo, CHEN Yong-hui, LU Jia-nan. Experimental study on initial shear modulus and pore-size distribution of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 227-231. DOI: 10.11779/CJGE2017S1045
    [5]LIU Yang, WANG Cheng-lin, ZHANG Duo. Distribution and evolution of pore structure in 2D granular materials under biaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 494-503. DOI: 10.11779/CJGE201503013
    [6]SUN De-an, GAO You, LIU Wen-jie, WEI Chang-fu, ZHANG Sheng. Soil-water characteristics and pore-size distribution of lateritic clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 351-356. DOI: 10.11779/CJGE201502020
    [7]HU Ran, CHEN Yi-feng, ZHOU Chuang-bing. A water retention curve model for deformable soils based on pore size distribution[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1451-1462.
    [8]LIANG Yue, CHENJian-sheng, CHEN Liang. Numerical simulation model for pore flows and distribution of their velocity[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1104-1109.
    [9]LI Fuqiang, WANG Zhao, CHEN Lun, XUE Yongping. Digital image analysis to determine pore size distribution of filtration materials[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 857-860.
    [10]CHANG Dave Ta-tech, TING Yuan-hao, CHENG Chia-ling. Study on variation of pore structure of geotextiles effected by filtration with soils[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 500-504.
  • Cited by

    Periodical cited type(7)

    1. 岳玮琦,顾展飞,苏伟林. 盾构滚刀作用下混凝土材料破碎分形与能耗. 材料科学与工程学报. 2023(06): 995-1000+1010 .
    2. 许宇,李兴高,杨益,牟举文,苏伟林. 盾构切刀切削混凝土过程中的动态响应试验. 哈尔滨工业大学学报. 2021(05): 182-189 .
    3. 苏伟林,李兴高,许宇,金大龙. 基于HJC模型的盾构刀具切削混凝土数值模拟. 浙江大学学报(工学版). 2020(06): 1106-1114 .
    4. 魏世广,蒋敏敏,肖昭然,周长明. 竖向荷载作用下盾构开挖引起的桩身竖向响应分析. 三峡大学学报(自然科学版). 2020(06): 68-72 .
    5. 王渭,蒋云鹏. 不同条件下顶管法施工对下穿隧道的作用特性研究. 交通世界. 2019(15): 122-123 .
    6. 黄启舒,孟庆生. 公路隧道下穿既有桥梁的施工影响及工程措施研究. 公路与汽运. 2019(05): 144-146 .
    7. 郭力,李太杰. 城市桥梁桩基施工对既有盾构隧道的影响研究. 公路工程. 2019(05): 118-122+187 .

    Other cited types(14)

Catalog

    Article views (277) PDF downloads (150) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return