Citation: | ZHANG Shu-kun, WANG Lai-gui, LU Lu, WANG Shu-da, FENG Dian-zhi. Weakening effects of occurrence structural plane on mechanical properties of silty mudstone[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2015-2023. DOI: 10.11779/CJGE202011006 |
[1] |
HOEK E. Underground Excavations in Rock[M]. London: Institution of Mining and Metallurgy, 1980.
|
[2] |
HE Z L, ZHU Z D, NI X H, et al. Shear creep tests and creep constitutive model of marble with structural plane[J]. Eur J Environ Civ Eng, 2010. doi: 10.1080/19648189.2017.1347066.
|
[3] |
LIU J, CHEN Y, WAN W, et al. The influence of bedding plane orientation on rock breakages in biaxial states[J]. Theoretical and Applied Fracture Mechanics, 2018, 95: 186-93. doi: 10.1016/J.tafmec.2018.03.005.
|
[4] |
SONG D, CHEN J, CAI J. Deformation monitoring of rock slope with weak bedding structural plane subject to tunnel excavation[J]. Arabian Journal of Geosciences, 2018, 11(11). doi: 10.1007/s12517-018-3602-7.
|
[5] |
REIK G. Strength and deformation characteristics of jointed media in true triaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(6): 295-303.
|
[6] |
张淑坤, 王树达, 王来贵, 等. 结构面局部弱化影响下巷道围岩稳定性研究[J]. 中国安全科学学报, 2018, 28(7): 116-121. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201807019.htm
ZHANG Shu-kun, WANG Shu-da, WANG Lai-gui, et al. Stability study of roadway surrounding rock under influence of local weakening of structural plane[J]. China Safety Science Journal, 2018, 28(7): 116-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201807019.htm
|
[7] |
NASSERI M H, RAMAMURTHY T. Failure mechanism in schistose rocks[J]. International Journal of Rock Mechanics & Mining Sciences, 1997, 34(3/4): 460. doi: 10.1016/S0148-9062(97)00219-2.
|
[8] |
ARZÚA J, ALEJANO L R, WALTON G. Strength and dilation of jointed granite specimens in servo-controlled triaxial tests[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 69: 93-104. doi: 10.1016/j.ijrmms.2014.04.001
|
[9] |
MEDHURST T P. A study of the mechanical behaviour of coal for pillar design[J]. International Journal of Rock Mechanics & Mining Sciences, 1998, 35(8): 1087-1105.
|
[10] |
SEIDEL J P. The application of energy principles to the determination of the sliding resistance of rock joints[J]. Rock Mechanics and Rock Engineering, 1995, 28(4): 211-226. doi: 10.1007/BF01020227
|
[11] |
KWON T H, HONG E S, CHO G C. Shear behavior of rectangular-shaped asperities in rock joints[J]. KSCE J Civ Eng, 2010,14(3): 323-332. doi: 10.1007/s12205-010-0323-1
|
[12] |
BORST R D, MÜHLHAUS H. Gradient-dependent plasticity: formulation and algorithmic aspects[J]. International Journal for Numerical Methods in Engineering, 1992, 35(3): 521-539. doi: 10.1002/nme.1620350307
|
[13] |
王学滨, 张楠, 董伟, 等. 基于数字图像相关方法的单轴压缩黏土试样剪切带法向应变场观测[J]. 应用基础与工程科学学报, 2018, 26(1): 177-189. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201801016.htm
WANG Xue-bin, ZHANG Nan, DONG Wei, et al. Experimental studies of normal strain fields of shear bands of clay specimens in uniaxial compression using digital image orrelation method[J]. Journal of Basic Science and Engineering, 2018, 26(1): 177-189. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201801016.htm
|
[14] |
MAS P. On the continuum formulation of higher gradient plasticity for single and polycrystals[J]. J Mech Phys Solids, 2000, 48(8): 1777-1796. doi: 10.1016/S0022-5096(99)00024-1
|
[15] |
FAIRHURST C E. Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression[J]. International journal of Rock Mechaniss and Mining Sciences, 1999, 36(3): 279-289. doi: 10.1016/S0148-9062(99)00006-6
|
[16] |
WALSH J B. A fracture criterion for brittle anisotropic rock[J]. Journal of Geophysical Research, 1964, 69(16): 3449-3456. doi: 10.1029/JZ069i016p03449
|
[17] |
罗可, 招国栋, 曾佳君, 等. 加载速率影响的含裂隙类岩石材料破断试验与数值模拟[J]. 岩石力学与工程学报, 2018, 37(8): 1833-1842. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201808006.htm
LUO Ke, ZHAO Guo-dong, ZENG Jia-jun, et al. Fracture experiments and numerical simulation of cracked body in rock-like materials affected by loading rate[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(8): 1833-1842. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201808006.htm
|
[18] |
NICHOLAS B. Review of a new shear strength criterion for rock joints[J]. Eng Geol, 1973, 7: 287-332. doi: 10.1016/0013-7952(73)90013-6
|
[19] |
刘红岩, 吕淑然, 张力民. 基于组合模型法的贯通节理岩体动态损伤本构模型[J]. 岩土工程学报, 2014, 36(10): 1814-1821. doi: 10.11779/CJGE201410008
LIU Hong-yan, LÜ Shu-ran, ZHANG Li-min. Dynamic damage constitutive model for persistent jointed rock mass based on combination model method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1814-1821. (in Chinese) doi: 10.11779/CJGE201410008
|
[20] |
KHALID A, ALSHIBLI , STEIN S. Shear band formation in plane strain experiments of sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(6): 495-503.
|
[21] |
宋义敏, 邢同振, 赵泽鑫, 等. 红砂岩变形演化及声发射主频特征实验研究[J]. 煤炭学报, 2017, 42(增刊2): 362-368. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2017S2009.htm
SONG Yi-min, XING Tong-zhen, ZHAO Ze-xin, et al. Experimental study on deformation evolution and acoustic emission dominant-frequency characteristics of red sandstone[J]. Journal of China Coal Society, 2017, 42(S2): 362-368. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2017S2009.htm
|
[22] |
李西蒙, 刘长友, PENG Syd S, 等. 单轴分级循环加载条件下砂岩疲劳变形特性与损伤模型研究[J]. 中国矿业大学学报, 2017, 46(1): 8-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201701002.htm
LI Xi-meng, LIU Chang-you, PENG Syd S, et al. Fatigue deformation characteristics and damage model of sandstone subjected to uniaxial step cyclic loading[J]. Journal of China University of Mining & Technology, 2017, 46(1): 8-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201701002.htm
|
[1] | TIAN Ning, CHEN Jian, YOU Wei-jun, HUANG Jue-hao, ZHANG Jiang-xiong, YI Shun, FU Xiao-dong, TIAN Kai-wei. Simulation of undrained shear strength by rotated anisotropy with non-stationary random field[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 92-95. DOI: 10.11779/CJGE2021S2022 |
[2] | WANG Li-qin, ZHAO Cong, HU Xiang-yang, LI Lun, WANG Zheng, LI Kai-yu. Strength and structural anisotropy of loess[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 25-29. DOI: 10.11779/CJGE2021S1005 |
[3] | ZHOU Jian, LIU Zheng-yi, YAN Jia-jia. Effects of inherent and induced anisotropies on strength and deformation characteristics of soft clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 666-670. |
[4] | LIU Yang. Anisotropic strength criteria of sand: inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1526-1534. |
[5] | LIU Yang. Anisotropic strength criteria of sand: Stress-induced anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 460-468. |
[6] | ZHANG Lianwei, ZHANG Jianmin, ZHANG Ga. SMP-based anisotropic strength criteria of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1107-1111. |
[7] | HUANG Maosong, SONG Xiaoyu, QIN Huilai. Basal stability of braced excavations in K0-consolidated soft clay by upper bound method[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 250-255. |
[8] | Zhang Huiming, Zeng Qiaoling. Steady state strength of sand:concepts and experiment[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 95-100. |
[9] | Wang Hongjin, Zhang Guoping, Zhou Keji. Effects Of Inherent and Induced Anisotropy on Strength and Deformation Characteristics of Compacted Cohesive Soil[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(3): 1-10. |
[10] | Zhao Wenrui. Strength Properties of Anisotropic Rock of an Argillaceous Siltstone[J]. Chinese Journal of Geotechnical Engineering, 1984, 6(1): 32-37. |