• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Shu-kun, WANG Lai-gui, LU Lu, WANG Shu-da, FENG Dian-zhi. Weakening effects of occurrence structural plane on mechanical properties of silty mudstone[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2015-2023. DOI: 10.11779/CJGE202011006
Citation: ZHANG Shu-kun, WANG Lai-gui, LU Lu, WANG Shu-da, FENG Dian-zhi. Weakening effects of occurrence structural plane on mechanical properties of silty mudstone[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2015-2023. DOI: 10.11779/CJGE202011006

Weakening effects of occurrence structural plane on mechanical properties of silty mudstone

More Information
  • Received Date: August 04, 2019
  • Available Online: December 05, 2022
  • The structural plane has a weakening effect on the physical and mechanical properties of rock mass, which directly affects the stability of rock projects. Taking silty mudstone of surrounding rock of coal mine roadway as the research object, the quasi-static uniaxial loading tests and the uniaxial cyclic loading and unloading tests are performed on the rock specimens with different dip angles. The digital images of the overall process of loading and deformation are collected synchronously by the speckle system, and the mechanical properties and strain field evolution characteristics of rock specimens under the influences of weakening of structural plane with different dips are analyzed. The results show that the weakening effects of structural plane on the stress and deformation of silty mudstone are obvious, especially with the tread approaching to 60°. Under the quasi-static uniaxial loading, the stress-strain curves of the occurrence specimens with dip angles of 45° and 60° show double peaks due to the weakening of the filling media on the structural plane. The parameters of deformation localizing length ratios of structural plane and rock specimens are put forward, and quantitative analysis of strain evolution is performed to determine the contribution of deformation of structural plane and rock specimens to their overall deformation. Besides, compared with the quasi-static uniaxial loading tests, the cyclic loading and unloading tests improve the dominance of failure of structural plane, which thus significantly reduces the peak strength of specimens.
  • [1]
    HOEK E. Underground Excavations in Rock[M]. London: Institution of Mining and Metallurgy, 1980.
    [2]
    HE Z L, ZHU Z D, NI X H, et al. Shear creep tests and creep constitutive model of marble with structural plane[J]. Eur J Environ Civ Eng, 2010. doi: 10.1080/19648189.2017.1347066.
    [3]
    LIU J, CHEN Y, WAN W, et al. The influence of bedding plane orientation on rock breakages in biaxial states[J]. Theoretical and Applied Fracture Mechanics, 2018, 95: 186-93. doi: 10.1016/J.tafmec.2018.03.005.
    [4]
    SONG D, CHEN J, CAI J. Deformation monitoring of rock slope with weak bedding structural plane subject to tunnel excavation[J]. Arabian Journal of Geosciences, 2018, 11(11). doi: 10.1007/s12517-018-3602-7.
    [5]
    REIK G. Strength and deformation characteristics of jointed media in true triaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(6): 295-303.
    [6]
    张淑坤, 王树达, 王来贵, 等. 结构面局部弱化影响下巷道围岩稳定性研究[J]. 中国安全科学学报, 2018, 28(7): 116-121. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201807019.htm

    ZHANG Shu-kun, WANG Shu-da, WANG Lai-gui, et al. Stability study of roadway surrounding rock under influence of local weakening of structural plane[J]. China Safety Science Journal, 2018, 28(7): 116-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201807019.htm
    [7]
    NASSERI M H, RAMAMURTHY T. Failure mechanism in schistose rocks[J]. International Journal of Rock Mechanics & Mining Sciences, 1997, 34(3/4): 460. doi: 10.1016/S0148-9062(97)00219-2.
    [8]
    ARZÚA J, ALEJANO L R, WALTON G. Strength and dilation of jointed granite specimens in servo-controlled triaxial tests[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 69: 93-104. doi: 10.1016/j.ijrmms.2014.04.001
    [9]
    MEDHURST T P. A study of the mechanical behaviour of coal for pillar design[J]. International Journal of Rock Mechanics & Mining Sciences, 1998, 35(8): 1087-1105.
    [10]
    SEIDEL J P. The application of energy principles to the determination of the sliding resistance of rock joints[J]. Rock Mechanics and Rock Engineering, 1995, 28(4): 211-226. doi: 10.1007/BF01020227
    [11]
    KWON T H, HONG E S, CHO G C. Shear behavior of rectangular-shaped asperities in rock joints[J]. KSCE J Civ Eng, 2010,14(3): 323-332. doi: 10.1007/s12205-010-0323-1
    [12]
    BORST R D, MÜHLHAUS H. Gradient-dependent plasticity: formulation and algorithmic aspects[J]. International Journal for Numerical Methods in Engineering, 1992, 35(3): 521-539. doi: 10.1002/nme.1620350307
    [13]
    王学滨, 张楠, 董伟, 等. 基于数字图像相关方法的单轴压缩黏土试样剪切带法向应变场观测[J]. 应用基础与工程科学学报, 2018, 26(1): 177-189. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201801016.htm

    WANG Xue-bin, ZHANG Nan, DONG Wei, et al. Experimental studies of normal strain fields of shear bands of clay specimens in uniaxial compression using digital image orrelation method[J]. Journal of Basic Science and Engineering, 2018, 26(1): 177-189. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201801016.htm
    [14]
    MAS P. On the continuum formulation of higher gradient plasticity for single and polycrystals[J]. J Mech Phys Solids, 2000, 48(8): 1777-1796. doi: 10.1016/S0022-5096(99)00024-1
    [15]
    FAIRHURST C E. Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression[J]. International journal of Rock Mechaniss and Mining Sciences, 1999, 36(3): 279-289. doi: 10.1016/S0148-9062(99)00006-6
    [16]
    WALSH J B. A fracture criterion for brittle anisotropic rock[J]. Journal of Geophysical Research, 1964, 69(16): 3449-3456. doi: 10.1029/JZ069i016p03449
    [17]
    罗可, 招国栋, 曾佳君, 等. 加载速率影响的含裂隙类岩石材料破断试验与数值模拟[J]. 岩石力学与工程学报, 2018, 37(8): 1833-1842. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201808006.htm

    LUO Ke, ZHAO Guo-dong, ZENG Jia-jun, et al. Fracture experiments and numerical simulation of cracked body in rock-like materials affected by loading rate[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(8): 1833-1842. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201808006.htm
    [18]
    NICHOLAS B. Review of a new shear strength criterion for rock joints[J]. Eng Geol, 1973, 7: 287-332. doi: 10.1016/0013-7952(73)90013-6
    [19]
    刘红岩, 吕淑然, 张力民. 基于组合模型法的贯通节理岩体动态损伤本构模型[J]. 岩土工程学报, 2014, 36(10): 1814-1821. doi: 10.11779/CJGE201410008

    LIU Hong-yan, LÜ Shu-ran, ZHANG Li-min. Dynamic damage constitutive model for persistent jointed rock mass based on combination model method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1814-1821. (in Chinese) doi: 10.11779/CJGE201410008
    [20]
    KHALID A, ALSHIBLI , STEIN S. Shear band formation in plane strain experiments of sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(6): 495-503.
    [21]
    宋义敏, 邢同振, 赵泽鑫, 等. 红砂岩变形演化及声发射主频特征实验研究[J]. 煤炭学报, 2017, 42(增刊2): 362-368. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2017S2009.htm

    SONG Yi-min, XING Tong-zhen, ZHAO Ze-xin, et al. Experimental study on deformation evolution and acoustic emission dominant-frequency characteristics of red sandstone[J]. Journal of China Coal Society, 2017, 42(S2): 362-368. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2017S2009.htm
    [22]
    李西蒙, 刘长友, PENG Syd S, 等. 单轴分级循环加载条件下砂岩疲劳变形特性与损伤模型研究[J]. 中国矿业大学学报, 2017, 46(1): 8-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201701002.htm

    LI Xi-meng, LIU Chang-you, PENG Syd S, et al. Fatigue deformation characteristics and damage model of sandstone subjected to uniaxial step cyclic loading[J]. Journal of China University of Mining & Technology, 2017, 46(1): 8-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201701002.htm
  • Related Articles

    [1]TIAN Ning, CHEN Jian, YOU Wei-jun, HUANG Jue-hao, ZHANG Jiang-xiong, YI Shun, FU Xiao-dong, TIAN Kai-wei. Simulation of undrained shear strength by rotated anisotropy with non-stationary random field[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 92-95. DOI: 10.11779/CJGE2021S2022
    [2]WANG Li-qin, ZHAO Cong, HU Xiang-yang, LI Lun, WANG Zheng, LI Kai-yu. Strength and structural anisotropy of loess[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 25-29. DOI: 10.11779/CJGE2021S1005
    [3]ZHOU Jian, LIU Zheng-yi, YAN Jia-jia. Effects of inherent and induced anisotropies on strength and deformation characteristics of soft clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 666-670.
    [4]LIU Yang. Anisotropic strength criteria of sand: inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1526-1534.
    [5]LIU Yang. Anisotropic strength criteria of sand: Stress-induced anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 460-468.
    [6]ZHANG Lianwei, ZHANG Jianmin, ZHANG Ga. SMP-based anisotropic strength criteria of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1107-1111.
    [7]HUANG Maosong, SONG Xiaoyu, QIN Huilai. Basal stability of braced excavations in K0-consolidated soft clay by upper bound method[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 250-255.
    [8]Zhang Huiming, Zeng Qiaoling. Steady state strength of sand:concepts and experiment[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 95-100.
    [9]Wang Hongjin, Zhang Guoping, Zhou Keji. Effects Of Inherent and Induced Anisotropy on Strength and Deformation Characteristics of Compacted Cohesive Soil[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(3): 1-10.
    [10]Zhao Wenrui. Strength Properties of Anisotropic Rock of an Argillaceous Siltstone[J]. Chinese Journal of Geotechnical Engineering, 1984, 6(1): 32-37.

Catalog

    Article views (292) PDF downloads (153) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return