• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Zhi-tao, ZHUANG Yan-feng. Electrokinetic migration and removal of lead pollutants in kaolin[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1359-1367. DOI: 10.11779/CJGE202007020
Citation: LIU Zhi-tao, ZHUANG Yan-feng. Electrokinetic migration and removal of lead pollutants in kaolin[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1359-1367. DOI: 10.11779/CJGE202007020

Electrokinetic migration and removal of lead pollutants in kaolin

More Information
  • Received Date: September 25, 2019
  • Available Online: December 05, 2022
  • The artificially prepared lead-contaminated kaolin is used as the research object with a new type of electrokinetic geosynthetics (EKG) as electrode to study the mechanism of electrokinetic remediation of lead-contaminated kaolin. Two different electrokinetic remediation methods are used. The effects of different additives on the removal efficiency of heavy metals in contaminated soil and the differences of the two repair methods are studied by analyzing the current, soil pH and the existing forms of lead elements. The results show that the later stage of current variation for the renewal electrolyte method of electrokinetic remediation tests has a significant decline pattern, while that for the electrolyte cycle method has a slightly fluctuating pattern instead. For the remediation of lead-contaminated soil, the additive of the acetic is more effective to the removal of lead than that of the citric. Citric acid and lead ions are easy to form substances that are difficult to ionize, which is poor for lead migration. The ethylenediaminetetraacetic acid disodium can complex with most lead ions to form complex ions. The hydrogen ion and hydroxide radical produced by electrolytic water can be well controlled by circulating cathode and anode electrolyte with peristaltic pump, so as to reduce their impact on the soil pH and heavy metal speciation. In the tests, the removal of heavy metals by ion diffusion and scouring caused by the electrolyte circulation is less than 10%. This further illustrates the effectiveness of the electrokinetic method in removing heavy metal contaminants from soil.
  • [1]
    李欣. 电动修复技术机理及去除污泥和尾砂中重金属的研究[D]. 长沙: 湖南大学, 2007: 1-8.

    LI Xin. Research on the Principle of Electro-Remediation Technology and Application in Removal of Heavy Metal in Sludge and Tailings[D]. Changsha: Hunan University, 2007: 1-8. (in Chinese)
    [2]
    刘又畅. 电动力学新技术及其在重金属污染土壤修复中的应用研究[D]. 重庆: 重庆大学, 2014: 1-5.

    LIU You-chang. A New Electrokinetic Technique and its Application in Remediation of Heavy Metal Contaminated Soils[D]. Chongqing: Chongqing Universit, 2014: 1-5. (in Chinese)
    [3]
    庄艳峰. 电渗排水固结的设计理论和方法[J]. 岩土工程学报, 2016, 38(增刊): 152-155. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S1030.htm

    ZHUANG Yan-feng. Theory and design method for electro-osmotic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S0): 152-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S1030.htm
    [4]
    王协群, 邹维列. 电动土工合成材料的特性及应用[J]. 武汉理工大学学报, 2002, 24(6): 62-65. doi: 10.3321/j.issn:1671-4431.2002.06.019

    WANG Xie-qun, ZOU Wei-lie. Characteristics and application of electric geosynthetics[J]. Journal of Wuhan University of Technology, 2002, 24(6): 62-65. (in Chinese) doi: 10.3321/j.issn:1671-4431.2002.06.019
    [5]
    庄艳峰, 邹维列, 王钊, 等. 一种可导电的塑料排水板: 201210197981.4[P]. 2012-10-10.
    [6]
    环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 36(5): 10-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHBY201405004.htm

    Ministry of Environmental Protection, Ministry of Land and Resources. National soil pollution survey communique[J]. China Environmental Protection Industry, 2014, 36(5): 10-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHBY201405004.htm
    [7]
    袁立竹. 强化电动修复重金属复合污染土壤研究[D]. 长春: 中国科学院大学东北地理与农业生态研究所, 2017: 37-39.

    YUAN Li-zhu. Enhanced Electrokinetic Remediation of Multi-Metals Contaminated Soil[D]. Changchun: Northeast Institute of Geography and Agricultural Ecology, University of Chinese Academy of Sciences, 2017: 37-39. (in Chinese)
    [8]
    AMMAMI M T, BENAMAR A, WANG H, et al. Simultaneous electrokinetic removal of polycyclic aromatic hydrocarbons and metals from asediment using mixed enhancing agents[J]. International Journal of Environmental Science and Technology, 2014, 11(7): 1801-1816. doi: 10.1007/s13762-013-0395-9
    [9]
    吴蝉, 袁松虎, 万金忠, 等. 原电池驱动污染高岭土中镉的点动力修复[J]. 环境化学, 2008, 27(2): 168-171. doi: 10.3321/j.issn:0254-6108.2008.02.007

    WU Chan, YUAN Song-hu, WAN Jin-zhong, et al. Point-dynamic repair of cadmium in polluted kaolin by primary battery[J]. Environmental Chemistry, 2008, 27(2): 168-171. (in Chinese) doi: 10.3321/j.issn:0254-6108.2008.02.007
    [10]
    陆小成, 黄星发, 程炯佳, 等. 模拟土壤组分高岭土和蒙脱石中Cu(Ⅱ)污染的电动修复研究[J]. 中国科技论文在线, 2007, 8(2): 577-581. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX200708009.htm

    LU Xiao-cheng, HUANG Xing-fa, CHENG Yu-jia, et al. Research on the electrokinetic remediation of Cu(II) pollution in simulated soil components kaoline and montmorillonite[J]. Sciencepaper Online, 2007, 8(2): 577-581. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX200708009.htm
    [11]
    甘文君, 何跃, 张孝飞, 等. 电镀厂污染土壤重金属形态及淋洗去除效果[J]. 生态与农村环境学报, 2012, 28(1): 82-87. https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201201016.htm

    GAN Wen-jun, HE Yue, ZHANG Xiao-fei, et al. Speciation analysis of heavy metals in soils polluted by electroplating and effect of washing to the removal of the pollutants[J]. Journal of Ecology and Rural Environment, 2012, 28(1): 82-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201201016.htm
    [12]
    杨长明, 李建华, 仓龙. 城市污泥重金属电动修复技术与应用研究进展[J]. 净水技术, 2008, 27(4): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS200804003.htm

    YANG Chang-ming, LI Jian-hua, CANG Long. A review: electrokinetic remediation technology and its applications for heavy metals removal from sewage sludge[J]. Water Purification Technology, 2008, 27(4): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS200804003.htm
    [13]
    生活饮用水卫生标准:GB 5749—2006[S]. 2006.

    Hygienic Standard for Drinking Water: GB 5749—2006[S]. 2006. (in Chinese)
    [14]
    中国环境监测总站. 土壤元素的近代分析方法[M]. 北京: 中国环境科学出版社, 1992.

    China National Environmental Monitoring Center. Modern Analysis Method of Soil Elements[M]. Beijing: China Environmental Science Press, 1992. (in Chinese)
    [15]
    KIMURA T, TAKASE K I, TANAKA S. Concentration of copper and a copper-EDTA complex at the pH junction formed in soil by an electrokinetic remediation process[J]. Journal of Hazardous Materials, 2007, 143(3): 668-672.
    [16]
    李俊翔. 电动修复土壤重金属(Pb)污染的研究[D]. 广州: 广东工业大学, 2016: 25-27.

    LI Jun-xiang. Research on Remediating Heavy Metals Pb Contaminated Soil by Electrokinetic[D]. Guangzhou: Guangdong University of Technology, 2016: 25-27. (in Chinese)
    [17]
    温东东. 重金属污染土壤电动修复[D]. 上海: 华东理工大学, 2017: 14-16.

    WEN Dong-dong. Electrokinetic Remediation of Soil Contaminated by Heavy Metals and its Mechanism[D]. Shanghai: East China University of Science and Technology, 2017: 14-16. (in Chinese)
    [18]
    樊萌. 城市生活垃圾焚烧飞灰中重金属(Cd/Pb/Zn)添加电动去除实验研究[D]. 重庆: 重庆大学, 2013: 39-40.

    FAN Meng. Study on Enhanced Electrokinetic Removal Technology on Heavy Metals(Cd/Pb/Zn)in Municipal Solid Waste Incinerate Fly Ash[D]. Chongqing: Chongqing University, 2013: 39-40. (in Chinese)
    [19]
    樊广萍, 朱海燕, 郝秀珍, 等. 不同的添加试剂对重金属污染场地土壤的电动修复影响[J]. 中国环境科学, 2015, 35(5): 1458-1465. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201505036.htm

    FAN Guang-ping, ZHU Hai-yan, HAO Xiu-zhen, et al. Electrokinetic remediation of an electroplating contaminated soil with different enhancing electrolytes[J]. China Environmental Science, 2015, 35(5): 1458-1465. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201505036.htm
    [20]
    ACAR Y B, ALSHAWABKEH A N. Principles of electrokinetic remediation[J]. Environmental Science & Technology, 1993, 27(13): 2638-2647.
    [21]
    LI D, HUANG T, LIU K. Near-anode focusing phenomenon caused by the coupling effect of early precipitation and backward electromigration in electrokinetic remediation of MSWI fly ashes[J]. Environmental Technology, 2016, 37(2): 216-227.
  • Related Articles

    [1]CHENG Xuesong, ZHANG Runze, ZHENG Gang, WANG Ruozhan, ZHANG Yong, TU Jie, MA Yunkang. Experimental study on progressive collapse of tied-back retaining system of excavations induced by partial over-excavation or surcharge loading[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2078-2088. DOI: 10.11779/CJGE20230718
    [2]ZHENG Gang, YI Fan, HUANG Tian-ming, CHENG Xue-song, YU Dan-yao, LEI Ya-wei, WANG Ruo-zhan. Mechanism of overturning progressive collapse of excavations retained by double-row piles induced by over-excavation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1373-1381. DOI: 10.11779/CJGE202108001
    [3]CHENG Xue-song, ZHENG Gang, HUANG Tian-ming, DENG Chu-han, NIE Dong-qing, LIU Jie. Experimental study on mechanism of progressive collapse along length of excavation retained by cantilever contiguous piles[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1640-1649. DOI: 10.11779/CJGE201609011
    [4]LÜ Ya-ru, LIU Han-long, WANG Ming-yang, LI Ping. Theoretical analyses of load transfer mechanism for special pile foundations[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 212-217. DOI: 10.11779/CJGE2015S1040
    [5]ZHENG Gang, CUI Tao, JIANG Xiao-ting. Mechanism of progressive collapse induced by partial failure of shield tunnels in sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1556-1571. DOI: 10.11779/CJGE201509002
    [6]CHENG Xue-song, ZHENG Gang, DENG Chu-han, HUANG Tian-ming, NIE Dong-qing. Mechanism of progressive collapse induced by partial failure of cantilever contiguous retaining piles[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1249-1263. DOI: 10.11779/CJGE201507011
    [7]ZHANG Hao, SHI Ming-lei, LIU Wei-zheng, ZHAO Yu. Load effect of sparse capped-piles and soils in treating foundations under embankments[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1758-1765.
    [8]XING Hao-feng, MENG Ming-hui, LUO Yong, YE Guan-bao, HE Wen-yong. Load transfer mechanism and failure characteristics of piles embedded in soft rock[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 355-361.
    [9]SHI Feng. Experimental research on load transfer mechanism of pretensioned high strength spun concrete piles[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 95-99.
    [10]ZHANG Jiru, TANG Baofu. Hyperbolic function model to analyze load transfer mechanism on bolts[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 188-192.
  • Cited by

    Periodical cited type(7)

    1. 蒋家卫,李文彪,赵雅芝,陈国兴,杜修力. 场地均质性对浅埋地铁车站地下结构地震易损性的影响. 振动与冲击. 2024(06): 151-156+178 .
    2. 韩俊艳,李玉凤,钟紫蓝,缪惠全,杜修力. 不同场地条件下埋地腐蚀钢管地震易损性评价. 岩土工程学报. 2024(04): 774-783 . 本站查看
    3. 林峻岑,孙纬宇,李国玉,严松宏,佟浩. 基于矢量IMs的浅埋偏压黄土隧道地震易损性. 东南大学学报(自然科学版). 2024(02): 432-440 .
    4. 蒋家卫,黄文婷,赵凯,陈国兴,杜修力. 典型浅埋矩形框架地铁车站地下结构地震易损性分析. 工程力学. 2024(09): 9-17 .
    5. 郭志辉. 复杂高层建筑结构抗震设计方法研究. 砖瓦. 2023(03): 95-97 .
    6. 谭灿星,周瑾. 两层三跨岛式地铁车站的地震响应研究. 广东土木与建筑. 2023(04): 73-77 .
    7. 谢宏飞,蔡海兵. 地铁地下车站抗震研究主要方法与现状. 建井技术. 2023(06): 85-90 .

    Other cited types(8)

Catalog

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return