Citation: | LIU Zhi-tao, ZHUANG Yan-feng. Electrokinetic migration and removal of lead pollutants in kaolin[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1359-1367. DOI: 10.11779/CJGE202007020 |
[1] |
李欣. 电动修复技术机理及去除污泥和尾砂中重金属的研究[D]. 长沙: 湖南大学, 2007: 1-8.
LI Xin. Research on the Principle of Electro-Remediation Technology and Application in Removal of Heavy Metal in Sludge and Tailings[D]. Changsha: Hunan University, 2007: 1-8. (in Chinese)
|
[2] |
刘又畅. 电动力学新技术及其在重金属污染土壤修复中的应用研究[D]. 重庆: 重庆大学, 2014: 1-5.
LIU You-chang. A New Electrokinetic Technique and its Application in Remediation of Heavy Metal Contaminated Soils[D]. Chongqing: Chongqing Universit, 2014: 1-5. (in Chinese)
|
[3] |
庄艳峰. 电渗排水固结的设计理论和方法[J]. 岩土工程学报, 2016, 38(增刊): 152-155. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S1030.htm
ZHUANG Yan-feng. Theory and design method for electro-osmotic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S0): 152-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S1030.htm
|
[4] |
王协群, 邹维列. 电动土工合成材料的特性及应用[J]. 武汉理工大学学报, 2002, 24(6): 62-65. doi: 10.3321/j.issn:1671-4431.2002.06.019
WANG Xie-qun, ZOU Wei-lie. Characteristics and application of electric geosynthetics[J]. Journal of Wuhan University of Technology, 2002, 24(6): 62-65. (in Chinese) doi: 10.3321/j.issn:1671-4431.2002.06.019
|
[5] |
庄艳峰, 邹维列, 王钊, 等. 一种可导电的塑料排水板: 201210197981.4[P]. 2012-10-10.
|
[6] |
环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 36(5): 10-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHBY201405004.htm
Ministry of Environmental Protection, Ministry of Land and Resources. National soil pollution survey communique[J]. China Environmental Protection Industry, 2014, 36(5): 10-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHBY201405004.htm
|
[7] |
袁立竹. 强化电动修复重金属复合污染土壤研究[D]. 长春: 中国科学院大学东北地理与农业生态研究所, 2017: 37-39.
YUAN Li-zhu. Enhanced Electrokinetic Remediation of Multi-Metals Contaminated Soil[D]. Changchun: Northeast Institute of Geography and Agricultural Ecology, University of Chinese Academy of Sciences, 2017: 37-39. (in Chinese)
|
[8] |
AMMAMI M T, BENAMAR A, WANG H, et al. Simultaneous electrokinetic removal of polycyclic aromatic hydrocarbons and metals from asediment using mixed enhancing agents[J]. International Journal of Environmental Science and Technology, 2014, 11(7): 1801-1816. doi: 10.1007/s13762-013-0395-9
|
[9] |
吴蝉, 袁松虎, 万金忠, 等. 原电池驱动污染高岭土中镉的点动力修复[J]. 环境化学, 2008, 27(2): 168-171. doi: 10.3321/j.issn:0254-6108.2008.02.007
WU Chan, YUAN Song-hu, WAN Jin-zhong, et al. Point-dynamic repair of cadmium in polluted kaolin by primary battery[J]. Environmental Chemistry, 2008, 27(2): 168-171. (in Chinese) doi: 10.3321/j.issn:0254-6108.2008.02.007
|
[10] |
陆小成, 黄星发, 程炯佳, 等. 模拟土壤组分高岭土和蒙脱石中Cu(Ⅱ)污染的电动修复研究[J]. 中国科技论文在线, 2007, 8(2): 577-581. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX200708009.htm
LU Xiao-cheng, HUANG Xing-fa, CHENG Yu-jia, et al. Research on the electrokinetic remediation of Cu(II) pollution in simulated soil components kaoline and montmorillonite[J]. Sciencepaper Online, 2007, 8(2): 577-581. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX200708009.htm
|
[11] |
甘文君, 何跃, 张孝飞, 等. 电镀厂污染土壤重金属形态及淋洗去除效果[J]. 生态与农村环境学报, 2012, 28(1): 82-87. https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201201016.htm
GAN Wen-jun, HE Yue, ZHANG Xiao-fei, et al. Speciation analysis of heavy metals in soils polluted by electroplating and effect of washing to the removal of the pollutants[J]. Journal of Ecology and Rural Environment, 2012, 28(1): 82-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201201016.htm
|
[12] |
杨长明, 李建华, 仓龙. 城市污泥重金属电动修复技术与应用研究进展[J]. 净水技术, 2008, 27(4): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS200804003.htm
YANG Chang-ming, LI Jian-hua, CANG Long. A review: electrokinetic remediation technology and its applications for heavy metals removal from sewage sludge[J]. Water Purification Technology, 2008, 27(4): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS200804003.htm
|
[13] |
生活饮用水卫生标准:GB 5749—2006[S]. 2006.
Hygienic Standard for Drinking Water: GB 5749—2006[S]. 2006. (in Chinese)
|
[14] |
中国环境监测总站. 土壤元素的近代分析方法[M]. 北京: 中国环境科学出版社, 1992.
China National Environmental Monitoring Center. Modern Analysis Method of Soil Elements[M]. Beijing: China Environmental Science Press, 1992. (in Chinese)
|
[15] |
KIMURA T, TAKASE K I, TANAKA S. Concentration of copper and a copper-EDTA complex at the pH junction formed in soil by an electrokinetic remediation process[J]. Journal of Hazardous Materials, 2007, 143(3): 668-672.
|
[16] |
李俊翔. 电动修复土壤重金属(Pb)污染的研究[D]. 广州: 广东工业大学, 2016: 25-27.
LI Jun-xiang. Research on Remediating Heavy Metals Pb Contaminated Soil by Electrokinetic[D]. Guangzhou: Guangdong University of Technology, 2016: 25-27. (in Chinese)
|
[17] |
温东东. 重金属污染土壤电动修复[D]. 上海: 华东理工大学, 2017: 14-16.
WEN Dong-dong. Electrokinetic Remediation of Soil Contaminated by Heavy Metals and its Mechanism[D]. Shanghai: East China University of Science and Technology, 2017: 14-16. (in Chinese)
|
[18] |
樊萌. 城市生活垃圾焚烧飞灰中重金属(Cd/Pb/Zn)添加电动去除实验研究[D]. 重庆: 重庆大学, 2013: 39-40.
FAN Meng. Study on Enhanced Electrokinetic Removal Technology on Heavy Metals(Cd/Pb/Zn)in Municipal Solid Waste Incinerate Fly Ash[D]. Chongqing: Chongqing University, 2013: 39-40. (in Chinese)
|
[19] |
樊广萍, 朱海燕, 郝秀珍, 等. 不同的添加试剂对重金属污染场地土壤的电动修复影响[J]. 中国环境科学, 2015, 35(5): 1458-1465. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201505036.htm
FAN Guang-ping, ZHU Hai-yan, HAO Xiu-zhen, et al. Electrokinetic remediation of an electroplating contaminated soil with different enhancing electrolytes[J]. China Environmental Science, 2015, 35(5): 1458-1465. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201505036.htm
|
[20] |
ACAR Y B, ALSHAWABKEH A N. Principles of electrokinetic remediation[J]. Environmental Science & Technology, 1993, 27(13): 2638-2647.
|
[21] |
LI D, HUANG T, LIU K. Near-anode focusing phenomenon caused by the coupling effect of early precipitation and backward electromigration in electrokinetic remediation of MSWI fly ashes[J]. Environmental Technology, 2016, 37(2): 216-227.
|
[1] | CHENG Xuesong, ZHANG Runze, ZHENG Gang, WANG Ruozhan, ZHANG Yong, TU Jie, MA Yunkang. Experimental study on progressive collapse of tied-back retaining system of excavations induced by partial over-excavation or surcharge loading[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2078-2088. DOI: 10.11779/CJGE20230718 |
[2] | ZHENG Gang, YI Fan, HUANG Tian-ming, CHENG Xue-song, YU Dan-yao, LEI Ya-wei, WANG Ruo-zhan. Mechanism of overturning progressive collapse of excavations retained by double-row piles induced by over-excavation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1373-1381. DOI: 10.11779/CJGE202108001 |
[3] | CHENG Xue-song, ZHENG Gang, HUANG Tian-ming, DENG Chu-han, NIE Dong-qing, LIU Jie. Experimental study on mechanism of progressive collapse along length of excavation retained by cantilever contiguous piles[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1640-1649. DOI: 10.11779/CJGE201609011 |
[4] | LÜ Ya-ru, LIU Han-long, WANG Ming-yang, LI Ping. Theoretical analyses of load transfer mechanism for special pile foundations[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 212-217. DOI: 10.11779/CJGE2015S1040 |
[5] | ZHENG Gang, CUI Tao, JIANG Xiao-ting. Mechanism of progressive collapse induced by partial failure of shield tunnels in sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1556-1571. DOI: 10.11779/CJGE201509002 |
[6] | CHENG Xue-song, ZHENG Gang, DENG Chu-han, HUANG Tian-ming, NIE Dong-qing. Mechanism of progressive collapse induced by partial failure of cantilever contiguous retaining piles[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1249-1263. DOI: 10.11779/CJGE201507011 |
[7] | ZHANG Hao, SHI Ming-lei, LIU Wei-zheng, ZHAO Yu. Load effect of sparse capped-piles and soils in treating foundations under embankments[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1758-1765. |
[8] | XING Hao-feng, MENG Ming-hui, LUO Yong, YE Guan-bao, HE Wen-yong. Load transfer mechanism and failure characteristics of piles embedded in soft rock[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 355-361. |
[9] | SHI Feng. Experimental research on load transfer mechanism of pretensioned high strength spun concrete piles[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 95-99. |
[10] | ZHANG Jiru, TANG Baofu. Hyperbolic function model to analyze load transfer mechanism on bolts[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 188-192. |
1. |
蒋家卫,李文彪,赵雅芝,陈国兴,杜修力. 场地均质性对浅埋地铁车站地下结构地震易损性的影响. 振动与冲击. 2024(06): 151-156+178 .
![]() | |
2. |
韩俊艳,李玉凤,钟紫蓝,缪惠全,杜修力. 不同场地条件下埋地腐蚀钢管地震易损性评价. 岩土工程学报. 2024(04): 774-783 .
![]() | |
3. |
林峻岑,孙纬宇,李国玉,严松宏,佟浩. 基于矢量IMs的浅埋偏压黄土隧道地震易损性. 东南大学学报(自然科学版). 2024(02): 432-440 .
![]() | |
4. |
蒋家卫,黄文婷,赵凯,陈国兴,杜修力. 典型浅埋矩形框架地铁车站地下结构地震易损性分析. 工程力学. 2024(09): 9-17 .
![]() | |
5. |
郭志辉. 复杂高层建筑结构抗震设计方法研究. 砖瓦. 2023(03): 95-97 .
![]() | |
6. |
谭灿星,周瑾. 两层三跨岛式地铁车站的地震响应研究. 广东土木与建筑. 2023(04): 73-77 .
![]() | |
7. |
谢宏飞,蔡海兵. 地铁地下车站抗震研究主要方法与现状. 建井技术. 2023(06): 85-90 .
![]() |