• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHENG Gang, CAO Jian-ran, CHENG Xue-song, HA Da. Field tests on groundwater recharge considering leakage between semiconfined aquifers[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1609-1618. DOI: 10.11779/CJGE201909004
Citation: ZHENG Gang, CAO Jian-ran, CHENG Xue-song, HA Da. Field tests on groundwater recharge considering leakage between semiconfined aquifers[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1609-1618. DOI: 10.11779/CJGE201909004

Field tests on groundwater recharge considering leakage between semiconfined aquifers

More Information
  • Received Date: September 03, 2018
  • Published Date: September 24, 2019
  • The dewatering of an excavation will cause water-level drawdown in multiple aquifers outside the excavation in the presence of multiple confined aquifers where multiple hydraulic connections exist. Recharge of all layers will result in a significant increase in cost, so one layer can be recharged and the other aquifers can be recharged by leakage. The effects of dewatering tests, single-well recharge tests, and the dewatering-recharge tests on the hydraulic connections inside and outside the excavation, the hydraulic connections between different aquifers, and the effects of interlayer recharge are studied at the site of the excavation at a subway station. Due to the significant hydraulic connection between the aquifers, the vertical cross-flow recharge is strong, and the dewatering in the excavation can cause the head of the confined aquifer to fall and the subsidence outside the excavation. Recharge of the semiconfined aquifer Ⅰ outside the excavation can effectively raise the head of the upper phreatic layer and the lower aquifer II-1, and the subsidence caused by the water-level drawdown is controlled by the interlayer recharge. For the aquifer II-2, recharge of the aquifer Ⅰ also has a certain effect on the water level, but it is still not possible to fully restore the water level. It is recommended to combine the backup recharge wells in this aquifer to control the water-level drawdown.
  • [1]
    WU Y X, LIU H M, SHEN J S, et al.Geological and hydrogeological environment in Tianjin with potential geohazards and groundwater control during excavation[J]. Environmental Earth Sciences, 2018, 77(10): 392.
    [2]
    缪俊发, 吴林高, 王璋群. 大型深井点降水引起地面沉降的研究[J].岩土工程学报, 1991, 13(3): 60-64.
    (MIAO Jun-fa, WU Lin-gao, WANG Zhang-qun.Study on land subsidence caused by large deep well point precipitation[J]. Chinese Journal of Geotechnical Engineering, 1991, 13(3): 60-64. (in Chinese))
    [3]
    龚晓南, 张杰. 承压水降压引起的上覆土层沉降分析[J]. 岩土工程学报, 2011, 33(1): 145-149.
    (GONG Xiao-nan, ZHANG Jie.Settlement of overlaying soil caused by decompression of confined water[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 145-149. (in Chinese))
    [4]
    郑刚, 曾超峰. 基坑开挖前潜水降水引起的地下连续墙侧移研究[J]. 岩土工程学报, 2013, 35(12): 2153-2163.
    (ZHENG Gang, ZENG Chao-feng.Lateral displacement of diaphragm wall by dewatering of phreatic water before excavation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2153-2163. (in Chinese))
    [5]
    ZHENG G, ZENG C F, DIAO Y, et al.Test and numerical research on wall deflections induced by pre-excavation dewatering[J]. Computers and Geotechnics, 2014, 62: 244-256.
    [6]
    黄应超, 徐杨青. 深基坑降水与回灌过程的数值模拟分析[J]. 岩土工程学报, 2014, 36(增刊2): 299-303.
    (HUANG Ying-chao, XU Yang-qing.Numerical simulation analysis of dewatering and recharge process of deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S2): 299-303. (in Chinese))
    [7]
    王国富, 王倩, 路林海, 等. 济南轨道交通某深基坑降水与回灌数值分析[J]. 地下空间与工程学报, 2017, 13(5): 1280-1288.
    (WANG Guo-fu, WANG Qian, LU Lin-hai, et al.Numerical analysis on dewatering and recharging of a deep foundation pit of Jinan railway[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(5): 1280-1288. (in Chinese))
    [8]
    ZHANG Y Q, LI M G, WANG J H, et al.Field tests of pumping-recharge technology for deep confined aquifers and its application to a deep excavation[J]. Engineering Geology, 2017, 228: 249-259.
    [9]
    卢士涛, 许涛涛, 李亮亮, 等. 承压砂层深基坑降水和回灌试验的应用研究[J]. 地下空间与工程学报, 2017, 13(增刊2): 658-662.
    (LU Shi-tao, XU Tao-tao, LI Liang-liang, et al.Applied study on pumping and recharge tests of deep foundation excavation in bearing sand layer area[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(S2): 658-662. (in Chinese))
    [10]
    HUANG Y, YANG Y, LI J.Numerical simulation of artificial groundwater recharge for controlling land subsidence[J]. KSCE Journal of Civil Engineering, 2015, 19(2): 418-426.
    [11]
    WANG J, WU Y, ZHANG X, et al.Field experiments and numerical simulations of confined aquifer response to multi-cycle recharge-recovery process through a well[J]. Journal of hydrology, 2012, 464: 328-343.
    [12]
    郑刚, 曹剑然, 程雪松, 等. 天津第二粉土粉砂微承压含水层回灌试验研究[J]. 岩土工程学报, 2018, 40(4): 592-601.
    (ZHENG Gang, CAO Jian-ran, CHENG Xue-song, et al.Experimental study on artificial recharge of second Tianjin silt and silty sand micro-confined aquifer[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 592-601. (in Chinese))
    [13]
    牛磊, 张春福, 孟祥玉, 等. 天津地区浅层地下水回灌试验分析[J]. 施工技术, 2016, 45(19): 46-48.
    (NIU Lei, ZHANG Chun-fu, MENG Xiang-yu, et al.Analysis of shallow groundwater recharge test in Tianjin area[J]. Construction Technology, 2016, 45(19): 46-48. (in Chinese))
    [14]
    何国峰, 张云, 孙铁, 等. 周期性开采和回灌条件下浅层地下水位变化特征研究——以天津滨海新区为例[J].水文地质工程地质, 2016, 43(6): 27-34.
    (HE Guo-feng, ZHANG Yun, SUN Tie, et al.Variation characteristics of shallow groundwater levels under periodic pumping and recharge test: examplified by Tianjin Binhai New Area[J]. Hydrogeology & Engineering Geology, 2016, 43(6): 27-34. (in Chinese))
    [15]
    郑刚, 曾超峰, 刘畅, 等. 天津首例基坑工程承压含水层回灌实测研究[J]. 岩土工程学报, 2013, 35(增刊2): 491-495.
    (ZHENG Gang, ZENG Chao-feng, LIU Chang, et al.Field observation of artificial recharge of confined water in first excavation case in Tianjin[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 491-495. (in Chinese))
    [16]
    曾超峰. 工程降水引起基坑及土体变形机理、规律及控制策略研究[D]. 天津: 天津大学, 2014.
    (ZENG Chao-feng.Study on deformation mechanism, behavior and control strategy of excavation and ground under dewatering[D]. Tianjin: Tianjin University, 2014. (in Chinese))
    [17]
    SHEN S L, WU Y X, XU Y S, et al.Evaluation of hydraulic parameters from pumping tests in multi-aquifers with vertical leakage in Tianjin[J]. Computers and Geotechnics, 2015, 68: 196-207.
    [18]
    叶淑君, 薛禹群. 应用沉降和水位数据计算上海地区弱透水层的参数[J]. 岩土力学, 2005, 26(2): 256-260.
    (YE Shu-jun, XUE Yu-qun.Stress-strain analysis for storage coefficients and vertical hydraulic conductivities of aquitards in Shanghai area[J]. Rock and Soil Mechanics, 2005, 26(2): 256-260. (in Chinese))
    [19]
    JACOB B.Hydraulics of groundwater[M]. New York: MacGraw-Hill, 1979.
    [20]
    曹洪, 张挺, 陈小丹. 多层强透水地基渗流计算的应用研究[J]. 岩石力学与工程学报, 2003, 22(7): 1185-1190.
    (CAO Hong, ZHANG Ting, CHEN Xiao-dan.Application of seepage calculation for multi-layered strong permeable soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(7): 1185-1190. (in Chinese))
  • Related Articles

    [1]WU Yongxia, SHEN Shuilong. Method for calculating pumping and recharging confined water inside and outside excavations under suspended waterproof curtain[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1971-1978. DOI: 10.11779/CJGE20220564
    [2]ZHUANG Chao, ZHOU Zhi-fang, LI Ming-wei, WANG Jin-guo. Prediction of valley shrinkage deformation in Xiluodu Hydropower Plant based on the hydraulic responses of a confined aquifer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1472-1480. DOI: 10.11779/CJGE201908011
    [3]LI Ya-jie, WANG Xu-dong, WANG Ya-ping, CHANG Yin-sheng. Deformation characteristics of sand in confined aquifer under cyclic pumping-recharging groundwater[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1943-1949. DOI: 10.11779/CJGE201810023
    [4]ZHENG Gang, CAO Jian-ran, CHENG Xue-song, HA Da, LIU Ju. Experimental study on artificial recharge of second Tianjin silt and silty sand micro-confined aquifer[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 592-601. DOI: 10.11779/CJGE201804002
    [5]ZHENG Gang, ZENG Chao-feng, XUE Xiu-li. Settlement mechanism of soils induced by local pressure-relief of confined aquifer and parameter analysis[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 802-817. DOI: 10.11779/CJGE201405002
    [6]YANG Jian-min, LI Jia. Volume of depression cone of pumping wells in non-leaky confined aquifer[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 186-189.
    [7]LI Li-ping, LI Shu-cai, LI Shu-chen, FENG Xian-da, LI Guo-ying, LIU Bin, WANG Jing, XU Zhen-hao. Numerical analysis and fluid-solid coupling model tests of coal mining under loose confined aquifer[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 679-690.
    [8]CHEN Cheng, YANG Ping, ZHANG Ting, SHI Zhi-ming. Temperature measurements of long-distance liquid nitrogen freezing in high-confined aquifer reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 145-150.
    [9]Semi-analytical numerical simulation for unsteady groundwater flows in anisotropic confined aquifers[J]. Chinese Journal of Geotechnical Engineering, 2010, 28(9).
    [10]Xue Yuqun, Xie Chunhong, Li Qinfen. A Thermal Energy Storage Model for A Confined Aquifer[J]. Chinese Journal of Geotechnical Engineering, 1990, 12(1): 23-34.

Catalog

    Article views (350) PDF downloads (188) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return