• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
ZHENG Gang, CAO Jian-ran, CHENG Xue-song, HA Da, LIU Ju. Experimental study on artificial recharge of second Tianjin silt and silty sand micro-confined aquifer[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 592-601. DOI: 10.11779/CJGE201804002
Citation: ZHENG Gang, CAO Jian-ran, CHENG Xue-song, HA Da, LIU Ju. Experimental study on artificial recharge of second Tianjin silt and silty sand micro-confined aquifer[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 592-601. DOI: 10.11779/CJGE201804002

Experimental study on artificial recharge of second Tianjin silt and silty sand micro-confined aquifer

More Information
  • Received Date: January 03, 2017
  • Published Date: April 24, 2018
  • The recharge measures are used to try to control the settlement and head down of the confined aquifers caused by the pumping of the foundation pits in Tianjin, Shanghai and other regions. However, the researches on the theory of recharge are still deficient, and the feasibility of recharging in the micro-confined aquifer of silt and sandy silt is also urgently needed. Therefore, a series of single-well recharge tests, group-pumped and group-recharge tests and double-combined recharge tests near a subway foundation pit project in Tianjin are carried out. The test results show that it is feasible to recharge in silt and fine sand as the main component of the soil layer, and the pumping theory can be used to predict the change of the water level in confined aquifers caused by recharge in practical engineering within a certain range. The hydrogeological parameters obtained by the pumping tests can be used to predict the rise of the water level of the recharge, but at the same flow rate, the uplift of the water level generated by recharge is significantly greater than the drawdown of the water level caused by pumping within the distance from the center well (about 5 ~ 7 m). The pressurized recharge can improve the efficiency remarkably. The amounts of recharge and pumping at a similar level can effectively control the settlements of the surrounding surface and buildings. The surrounding surface subsidence has a rapid development trend when the recharge is stopped. In practical engineering, in order to avoid such a settlement trend with rapid growth, the recharge time is properly extended after pumping is stopped, the amount of recharge is gradually reduced, and the groundwater level is gradually stabilized so as to avoid the rapid development of settlements at the end of pumping and recharge. The twin-well combined recharge technique can be used to control the decline of the water level of aquifers caused by the discharge of the recharge well.
  • [1]
    张莲花, 孔德坊. 沉降变形控制的基坑降水最优化方法及应用[J]. 岩土工程学报, 2005, 27(10): 1171-1174.
    (ZHANG Lian-hua, KONG De-fang.Optimization method and application of pit dewatering for controlling settlement[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1171-1174. (in Chinese))
    [2]
    金小荣, 俞建霖, 祝哨晨, 等. 基坑降水引起周围土体沉降性状分析[J]. 岩土力学, 2005, 26(10): 1575-1581.
    (JIN Xiao-rong, YU Jian-lin, ZHU Xiao-chen, et al.Analysis of behavior of settlement of pit’s surrounding soils by dewatering[J]. Rock and Soil Mechanics, 2005, 26(10): 1575-1581. (in Chinese))
    [3]
    骆祖江, 李朗, 姚天强, 等. 松散承压含水层地区深基坑降水三维渗流与地面沉降耦合模型[J]. 岩土工程学报, 2006, 28(11): 1947-1951.
    (LUO Zu-jiang, LI Lang, YAO Tian-qiang, et al.Coupling model of three dimensional seepage and land-subsidence for dewatering of deep foundation pit in loose confined aquifers[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 1947-1951. (in Chinese))
    [4]
    吴建中, 王寒梅, 杨天亮. 浅层地下水人工回灌应用于上海市工程性地面沉降防治的试验研究[J]. 现代地质, 2009, 23(6): 1194-1200.
    (WU Jian-zhong, WANG Han-mei, YANG Tian-liang.Experimental research on artifical recharge to shallow aquifer to control land subsidence due to construction in Shanghai City[J]. Geoscience, 2009, 23(6): 1194-1200. (in Chinese))
    [5]
    瞿成松, 徐丹. 地下水回灌在地铁边基坑降水中的应用[J]. 岩土工程技术, 2012, 26(5): 238-241.
    (QU Cheng-song, XU Dan.Groundwater recharge of pit dewatering close to the metro[J]. Geotechnical Engineering Technique, 2012, 26(5): 238-241. (in Chinese))
    [6]
    郑刚, 曾超峰, 刘畅, 等. 天津首例基坑工程承压含水层回灌实测研究[J]. 岩土工程学报, 2013, 35(增刊2): 491-495.
    (ZHENG Gang, ZENG Chao-feng, LIU Chang, et al.Field observation of artificial recharge of confined water in first excavation case in Tianjin[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 491-495. (in Chinese))
    [7]
    俞建霖, 龚晓南. 基坑工程地下水回灌系统的设计与应用技术研究[J]. 建筑结构学报, 2001, 22(5): 70-74.
    (YU Jian-lin, GONG Xiao-nan.Study on the design and the application of the groundwater recharge system in excavation[J]. Journal of Building Structures, 2001, 22(5): 70-74. (in Chinese))
    [8]
    BUTLER J J, HEALEY J M.Relationship Between pumping‐test and slug‐test parameters: scale effect or artifact?[J]. Ground Water, 1998, 36(2): 305-312.
    [9]
    COES A L, SPRUILL T B, THOMASSON M J.Multiple- method estimation of recharge rates at diverse locations in the North Carolina Coastal Plain, USA[J]. Hydrogeology Journal, 2007, 15(4): 773-788.
    [10]
    VOUDOURIS K, DIAMANTOPOULOU P, GIANNATOS G, et al.Groundwater recharge via deep boreholes in the Patras Industrial Area aquifer system (NW Peloponnesus, Greece)[J]. Bulletin of Engineering Geology and the Environment, 2006, 65(3): 297-308.
    [11]
    SHEN S L, XU Y S.Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai[J]. Canadian Geotechnical Journal, 2011, 48(9): 1378-1392.
    [12]
    TÜGEL F, HOUBEN G J, GRAF T. How appropriate is the Thiem equation for describing groundwater flow to actual wells?[J]. Hydrogeology Journal, 2016, 24(8): 2093-2101.
    [13]
    JAZAEI F, SIMPSON M J, CLEMENT T P.Spatial analysis of aquifer response times for radial flow processes: nondimensional analysis and laboratory-scale tests[J]. Journal of Hydrology, 2016(532): 1-8.
    [14]
    COOPER H H, JACOB C E.A generalized graphical method for evaluating formation constants and summarizing well‐field history[J]. Eos, Transactions American Geophysical Union, 1946, 27(4): 526-534.
    [15]
    薛禹群. 地下水动力学[M]. 北京: 地质出版社, 1997.
    (XUE Yu-qun.Groundwater dynamics[M]. Beijing: Geological Publishing House, 1997. (in Chinese))
    [16]
    张扬清, 冉岸绿, 武朝军, 等. 降压回灌作用下黏土的渗透特性试验研究[J]. 岩土工程学报, 2015, 37(增刊1): 21-25.
    (ZHANG Yang-qing, RAN An-lv, WU Chao-jun, et al.Experimental study on permeability properties of soft clay in process of pumping and recharge[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 21-25. (in Chinese))
    [17]
    吴昌瑜, 张伟, 李思慎, 等. 减压井机械淤堵机制与防治方法试验研究[J]. 岩土力学, 2009, 30(10): 3181-3187.
    (WU Chang-yu, ZHANG Wei, LI Si-shen, et al.Research on mechanical clogging mechanism of releaf well and its control method[J]. Rock and Soil Mechanics, 2009, 30(10): 3181-3187. (in Chinese))
    [18]
    李识博, 王常明, 王钢城, 等. 松散堆积物坝基渗透淤堵试验及颗粒流模拟[J]. 水利学报, 2012, 43(10): 1163-1170.
    (LI Shi-bo, WANG Chang-ming, WANG Gang-cheng, et al.Infiltration clogging test and simulation by PFC3D for loose dam foundation[J]. Journal of Hydraulic Engineering, 2012, 43(10): 1163-1170. (in Chinese))
    [19]
    李旺林, 束龙仓, 李砚阁, 等. 承压-潜水含水层完整反滤回灌井的稳定流计算[J]. 工程勘察, 2006(5): 27-30.
    (LI Wang-lin, SHU Long-cang, LI Yan-ge, et al.Calculation of steady flow in complete recharge well with filter layer with submerged aquifer[J]. Journal of Geotechnical Investigation & Surveying, 2006(5): 27-30. (in Chinese))
  • Cited by

    Periodical cited type(21)

    1. 艾楠,宋辰宁,王培森. 地铁运行对邻近建筑振动响应研究. 山东建筑大学学报. 2025(01): 32-40 .
    2. 杨超,朱硕,董文韬. 基于Citespace的城市轨道交通安全研究热点与前沿可视化分析. 交通与运输. 2025(01): 82-87 .
    3. 周腾飞. 地铁列车运行引起邻近建筑物振动响应研究. 四川水泥. 2025(02): 26-28 .
    4. 吴思豫,戚承志,卢春生,李太行,姜凯松,龙渊腾. 地铁运行对古城墙的振动影响. 工程建设与设计. 2025(03): 73-77 .
    5. 王凯,富志强,杨春波,王俊伟. 黄土地层公路隧道运营期下穿古长城动力响应研究. 公路. 2024(04): 416-421 .
    6. 张军. 深埋地铁隧道对临近桥梁桩基的扰动分析. 工程技术研究. 2024(07): 20-23+34 .
    7. 万颖君,金鑫,马光辉,张振宇,翟洪刚,汤方程,孙苗苗. 软土地区施工现场重载车辆对基坑周围环境振动实测分析. 华南地震. 2024(02): 128-135 .
    8. 花雨萌,谢伟平,陈斌. 地铁振动对建筑物竖向楼层响应的影响研究. 建筑结构学报. 2023(03): 122-129 .
    9. 邹超,冯青松,何卫. 列车运行引起地铁车辆段与上盖建筑环境振动研究综述. 交通运输工程学报. 2023(01): 27-46 .
    10. 孙志浩,李明睿,冯国辉,徐长节,黄展军,侯世磊,何小辉. 交通荷载下叠合式公轨隧道的力学性状研究. 铁道科学与工程学报. 2023(06): 2210-2221 .
    11. 贾宝新,周志扬,苑文雅,张晶. 基于等效质点峰值振动速度的高铁线路周边建筑结构振动评价研究. 岩土力学. 2023(09): 2696-2706 .
    12. 路德春,高泽军,孔凡超,马一丁,沈晨鹏,杜修力. 地铁列车运行诱发地面邻近建筑振动的数值模拟研究. 土木与环境工程学报(中英文). 2023(06): 113-124 .
    13. 肖迪,段旭,刘武超,邹愈,董琪,叶万军. 地铁振动作用下上部正交综合管廊动力响应试验研究. 防灾减灾工程学报. 2023(05): 1151-1159 .
    14. 王韵超,王思崎,郑茗旺,郑凌逶,谢新宇. 弹簧浮置板减振措施对地铁下穿不同结构建筑物振动影响实测及分析. 低温建筑技术. 2021(03): 51-54+59 .
    15. 谭佳,许炜萍,赵楚轩,王呼佳,杨朋,孙克国. 地铁过渡段结构振动响应特性与噪声分析. 城市轨道交通研究. 2021(05): 37-41+46 .
    16. 袁庆利. 运营期地铁列车振动下软黏土的动力响应及变形研究. 国防交通工程与技术. 2021(04): 25-30 .
    17. 汪益敏,刘品言,陶子渝,陈皓粤,周杰. 地铁车辆段直线电机列车车致振动的试验研究. 铁道科学与工程学报. 2021(09): 2436-2443 .
    18. 夏志强,凌可胜,董克胜,徐小扣,沈威,方火浪. 地铁列车曲线运行引起学校建筑物振动响应分析. 地震工程学报. 2021(06): 1377-1386 .
    19. 程保青,郭婧怡,蒋浩杰. 地铁车辆段咽喉区上盖建筑振动影响. 应用声学. 2021(06): 911-917 .
    20. 郑国琛,许航莉,祁皑,郭金龙. 地铁及地面交通环境振动实测与数值模拟研究. 中国环境科学. 2020(09): 4146-4154 .
    21. 孟坤,崔春义,许民泽,王启福,苏健. 地铁运行引起的临近桥梁结构振动分析. 深圳大学学报(理工版). 2020(06): 610-616 .

    Other cited types(18)

Catalog

    Article views (443) PDF downloads (327) Cited by(39)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return