• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Ji-ming, ZHU Wei, WU Si-lin. Sediment contamination and disposal after Fukushima nuclear accident: a case study[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1303-1310. DOI: 10.11779/CJGE201907015
Citation: LIU Ji-ming, ZHU Wei, WU Si-lin. Sediment contamination and disposal after Fukushima nuclear accident: a case study[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1303-1310. DOI: 10.11779/CJGE201907015

Sediment contamination and disposal after Fukushima nuclear accident: a case study

More Information
  • Received Date: August 01, 2018
  • Published Date: July 24, 2019
  • Fukushima nuclear accident has caused serious pollution, including water body pollution. The water contamination and radiation from contaminated sediments have raised great concern among Japanese government and the public. A survey conducted by Ministry of Environment of Japan shows that most radioactive contaminants in water bodies are accumulated in sediments, and the water contamination is negligible under most circumstances. It has no need to deal with the contaminated sediments that constantly lie under several meters of water, for water shields γ-rays. However, the ponds in rural area with a dry period may have the necessity of disposal. Various construction companies in Japan have developed a variety of disposal methods according to the local conditions. This paper presents the investigations and researches of water body pollution initiated by Japanese Government, and the process of decision-making and operation of pollution treatment, with some representative new methods and their application cases. An introduction to the unique example of in-situ coverage for fluid mud within the harbor of Fukushima Daiichi Nuclear Power Plant is presented as well.
  • [1]
    厚生労働省. 平成24年3月15日厚生労働省告示第130号[EB/OL]. 日本:厚生労働省, 2012[2018-03-16]. https://www.mhlw.go.jp/hourei.
    (Ministry of Health, Labor and Welfare. March 15, 2012 Notification No. 130 of the Ministry of Health, Labor and Welfare[EB/OL]. Japan: Ministry of Health, Labor and Welfare,2012[2018-03-16]. https://www.mhlw.go.jp/hourei.(in Japanese))
    [2]
    厚生労働省.平成24年3月5日健水発0305第2号. 水道水中の放射性物質に係る管理目標値の設定等について[EB/OL]. 日本: 厚生労働省, 2012[2018-03-16]. http://www.water.yokosuka.kanagawa.jp/quali/ shihyou.pdf.
    (Ministry of Health, Labor and Welfare. March 5, 2012 Notification No. 2 About setting of management target value for radioactive substances in tap water[EB/OL]. Japan: Ministry of Health, Labor and Welfare,2012[2018-03-16]. http://www.water.yokosuka.kanagawa.jp/quali/shihyou.pdf. (in Japanese))
    [3]
    環境省. 東日本大震災の被災地における放射性物質関連の環境モニタリング調査:公共用水域[EB/OL].日本:環境省,2011(2019-03-27)[2018-01-21].http://www.env.go.jp/jishin/monitoring/results_r-pw.html.
    (Ministry of the Environment. Radioactive Material Monitoring Surveys of the Water Environment[EB/OL].Japan: Ministry of the Environment, 2011(2019-03-27)[2018-01-21].http://www.env.go.jp/jishin/monitoring/results_r-pw.html(in Japanese))
    [4]
    環境省. 平成28年度公共用水域放射性物質モニタリング調査結果(まとめ)[EB/OL].日本:環境省,2017[2018-01-21]. http://www.env.go.jp/jishin/monitoring/results_r-pw-h28.html.
    (Ministry of the Environment. FY2016 Results of the Radioactive Material Monitoring in the Water Environment[EB/OL]. Japan: Ministry of the Environment, 2017[2018-01-21].http://www.env.go.jp/jishin/monitoring/results_r-pw-h28.html. (in Japanese))
    [5]
    環境省. 環境回復検討会(第12回)資料2:河川・湖沼等における放射性物質に係る知見の整理[EB/OL].日本: 環境省, 2016[2018-01-21]. http://www.env.go.jp/jishin/jishin/ rmp/conf/12/mat02.pdf.
    (Ministry of the Environment. Organization of knowledge on radioactive materials in rivers, lakes, etc. [EB/OL].Japan: Ministry of the Environment, 2016[2018-01-21].http://www.env.go.jp/jishin/jishin/rmp/conf/12/mat02.pdf. (in Japanese))
    [6]
    環境省. 災害廃棄物の広域処理の推進について[EB/OL]. 日本:環境省,2012[2018-01-21]. http://www.env.go.jp/jishin/ attach/memo20120111_shori.pdf.
    (Ministry of the Environment. Promotion of wide area treatment of disaster waste[EB/OL]. Japan: Ministry of the Environment, 2012[2018-01-21]. http://www.env.go.jp/jishin/attach/memo 20120111_shori.pdf. (in Japanese))
    [7]
    日本原子力研究所.実効線量評価のための光子・中性子・ベータ線制動輻射線に対する遮へい計算定数(2001年1月)[EB/OL]. 日本:日本原子能研究开发机构,2001[2018-01-23].http://jolissrch-inter.tokai-sc.jaea.go.jp/pdfdata/ JAERI-Data-Code-2000-044.pdf.
    (Japan Atomic Energy Research Institute. Shielding calculation constant for photon, neutron and beta ray braking radiation for effective dose evaluation (January 2001) [EB/OL]. Japan: Japan Atomic Energy Agency, 2001[2018-01-23]. http://jolissrch- inter.tokai-sc.jaea.go.jp/pdfdata/JAERI-Data-Code-2000-044.pdf. (in Japanese))
    [8]
    農林水産省. ため池の放射性物質対策技術マニュアル[EB/OL]. 日本:農林水産省,2015[2018-03-20]. http://www.maff.go.jp/j/press/nousin/saigai/150327.html.
    (Ministry of Agriculture, Forestry and Fisheries. Anti-radioactive material countermeasure technical manual[EB/OL]. Japan: Ministry of Agriculture, Forestry and Fisheries, 2015[2018-03-20]. http://www.maff.go.jp/j/press/nousin/ saigai/150327.html. (in Japanese))
    [9]
    东亚工业建设. マジックボール浚渫[EB/OL]. 日本:东亚建设工业,2014[2018-03-22]. https://www.toa-const.co.jp/ techno/civileng/dredge/e16.
    (Toa Corporation. Magic Ball dredging[EB/OL]. Japan: Toa Corporation, 2014[2018-03-22]. https://www.toa-const.co.jp/techno/civileng/dredge/e16. (in Japanese))
    [10]
    东洋建设. 水域(湖沼・河川等)の底質除染システム[EB/OL]. 日本:东洋建设,2014[2018-03-22]. http://www.toyo-const.co.jp/technology/781.html.
    (Toyo Construction Co., Ltd. Sediment decontamination system of water bodies (lakes, rivers, etc.) [EB/OL]. Japan: Toyo Construction Co.,Ltd,2014[2018-03-22]. http://www.toyo- const. co.jp/ technology/781.html. (in Japanese))
    [11]
    荻野隆男, 金成麻里. ため池における泥土の放射性物質除去システム[J]. 農業農村工学会誌, 2014(82): 58-59.
    (OGINO T, KANARI M.Radioactive Substances Removal System of Sludge in Irrigation Ponds[J]. Water, Land and Environmental Engineering, 2014(82): 58-59. (in Japanese))
    [12]
    大久保泰宏, 新舎博, 秋本哲平, 等. 浮泥の封じ込めを目的とした固化処理土の配合選定と施工方法[J]. 土木学会論文集b3(海洋開発), 2013, 69(2): 946-951.
    (OKUBO Y, SHINSHA H, AKIMOTO T, et al.Mix proportion determination and execution method of cement mixed soils for containing fluid mud[J]. Doboku Gakkai Ronbunshu B3. Kaiyo Kaihatsu, 2013, 69(2): 946-951. (in Japanese))
  • Related Articles

    [1]LI Dong-liang, LIU Xin-rong, LI Jun-jiang, WU Xiang-chao, LI Wei-shu, DU Ming-ze. Stability of shallowly buried soft rock tunnel anchorage by in-situ model tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2078-2087. DOI: 10.11779/CJGE201711016
    [2]CAO Yuan, NIU Guan-yi, WANG Tie-liang. In-situ measurement of rock permeability based on pneumatic tests in boreholes[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 534-539. DOI: 10.11779/CJGE201703018
    [3]DING Yu, XIA Zhen-yao, XU Wen-nian, YANG Qi. In-situ shear tests on base material soil-rock interface interacted by roots[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2107-2113. DOI: 10.11779/CJGE201611022
    [4]YIN Song, KONG Ling-wei, ZHANG Xian-wei, Hossain Md Sayem, FAN You-jie. Experimental study on in-situ properties of residual soil by self-boring pressuremeter[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 688-695. DOI: 10.11779/CJGE201604013
    [5]XIONG Shi-hu, ZHOU Huo-ming, HUANG Shu-ling, JIANG Zhi-ming. Rheological model of soft rock in Goupitan by in-situ plate-loading creep tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 53-57. DOI: 10.11779/CJGE201601004
    [6]DAI Guo-liang, DAI Yong-xing, MAO Yan-bing, GONG Wei-ming, LI Xiao-juan. Full scale in-situ static loading tests on pile groups in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 158-163. DOI: 10.11779/CJGE2015S2031
    [7]TANG Jin-song, LIU Song-yu, TONG Li-yuan, SHEN Cai-hua. In-situ direct shear tests on shear strength indices of pebble and gravelly soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 167-171. DOI: 10.11779/CJGE2015S1032
    [8]GUI Shu-qiang, CHENG Xiao-hui. In-situ tests on structural responses of energy piles during heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1087-1094. DOI: 10.11779/CJGE201406014
    [9]Zhu Zhengya, Xu Fang, Wei Moan. Numerical Evaluation of Shear Wave Logging by Single Borehole of Soil in Situ[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(5): 57-60.
    [10]Yan Ren-jue. In-Situ Measurement of Coupled Vibration Parameters[J]. Chinese Journal of Geotechnical Engineering, 1981, 3(3): 66-73.
  • Cited by

    Periodical cited type(6)

    1. 李斌,安关峰,王树太,温亦品,李波,柳献. 软硬交互地层盾构掘进线路特征对地表扰动的影响规律研究. 现代城市轨道交通. 2025(02): 63-71 .
    2. 张超,张生海,殷珂,张济,曾世超. 基于真实地形的山谷场地三维地震响应特征研究. 地震工程学报. 2025(03): 578-589 .
    3. 何卫平,李小军,杜修力,姚惠芹. P波入射分界面叠加区质点运动形成机制与峰值规律. 振动与冲击. 2023(18): 81-87+163 .
    4. 徐安全,梁建文,巴振宁. 上软下硬场地中大直径盾构隧道地震响应分析. 地震工程与工程振动. 2023(05): 12-21 .
    5. 师黎静,宋健,党鹏飞,刘佳轩. 区域场地近地表速度结构建模研究. 岩土工程学报. 2022(02): 360-367 . 本站查看
    6. 崔光耀,宋博涵,王道远,肖剑. 隧道软硬围岩交界段纤维混凝土衬砌抗震性能模型试验研究. 岩石力学与工程学报. 2021(S1): 2653-2661 .

    Other cited types(6)

Catalog

    Article views (267) PDF downloads (139) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return