• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XIONG Shi-hu, ZHOU Huo-ming, HUANG Shu-ling, JIANG Zhi-ming. Rheological model of soft rock in Goupitan by in-situ plate-loading creep tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 53-57. DOI: 10.11779/CJGE201601004
Citation: XIONG Shi-hu, ZHOU Huo-ming, HUANG Shu-ling, JIANG Zhi-ming. Rheological model of soft rock in Goupitan by in-situ plate-loading creep tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 53-57. DOI: 10.11779/CJGE201601004

Rheological model of soft rock in Goupitan by in-situ plate-loading creep tests

More Information
  • Received Date: November 03, 2014
  • Published Date: January 19, 2016
  • Two in-situ plate-loading creep tests on fracture shale in Goupitan Hydropower Station are conducted, in which the pressure is at the same engineering stress level and is loaded under one cycle pattern and the test durations are 1686 and 2299 h, respectively. Some creep characteristics of the soft rock are revealed as follows: (1) Under the engineering stress level, after decelerating creep at the initial stage and the subsequent constant-rate creep continuing for a period of 682 and 910 h, the creep rate tends to zero instead of occurrence of plastic flow, showing that the creep is the attenuation creep in total. (2) After unloading, there's instantly rebound deformation and anelasticity and residual deformation, which is over 50% of the total deformation. A kind of one-way spring element ([HI]), which will behave as elastic object under pressure but not rebound after unloading, is used to describe the residual deformation. By connecting the [HI] element with the generalized Kelvin model, a changed generalized Kelvin model is established. It has simple components and can comprehensively describe the creep features of soft rock, that is, it is the attenuation creep while loading and there is the residual deformation after unloading. The constitutive equation of the model is derived, and the creep formula is also derived based on the corresponding principle. The model parameters are inversed by taking the creep formula to fit the trial curves.
  • [1]
    刘学增, 王华军, 周 敏, 等. 板岩流变特性试验与模型辨识[J]. 同济大学学报(自然科学版), 2010, 38(5): 664-672. (LIU Xue-zeng, WANG Hua-jun, ZHOU Min, et al. Rheological tests of slates and model identification of rocks[J]. Joural of Tongji University (Natural Science), 2010, 38(5): 664-672. (in Chinese))
    [2]
    张强勇, 向 文, 杨文东, 等. 坝区岩体蠕变参数反演与边坡开挖流变计算分析[J]. 武汉大学学报, 2008, 41(5): 72-76,96. (ZHANG Qiang-yong, XIANG Weng, YANG Weng-dong, et al. Creep parameters inversion for dam zone rockmass and rheological computational analysys of slope excavation[J]. Engineering Journal of Wuhan University, 2008, 41(5): 72-76,96. (in Chinese))
    [3]
    周火明, 徐 平. 三峡永久船闸边坡现场岩体压缩蠕变试验研究[J]. 岩石力学与工程学报, 2001, 20(增刊): 1882-1885. (ZHOU Huo-ming, XU Ping. In-situ testing study on compressive creep behavior of rock mass in Three Gorges Project shiplock slopes[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(S0): 1882-1885. (in Chinese))
    [4]
    熊诗湖, 周火明, 钟作武. 岩体载荷蠕变试验方法研究[J].岩石力学与工程学报, 2009, 28(10): 2121-2127. (XIONG Shi-hu, ZHOU Huo-ming, ZHONG Zuo-wu. Study on methodology of plate-loading creeptest of rockmass[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2121-2127. (in Chinese))
    [5]
    陈文玲, 赵法锁, 弓虎军. 基于微观试验的云母石英片岩三轴蠕变机制研究[J]. 岩石力学与工程学报, 2010, 29(增刊2): 3578-3584. (CHEN Wen-ling, ZHAO Fa-suo, GONG Hu-jun. Study of triaxial creep mechanism of mica-quartz schist based on microscopic test[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 3578-3584. (in Chinese))
    [6]
    范庆忠, 高延法, 崔希海, 等. 软岩非线性蠕变模型研究[J].岩土工程学报, 2007, 29(4): 505-508. (FAN Qing-zhong, GAO Yan-fa, CUI Xi-hai, et al. Study o n nonlinear creep model of soft rock[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 505-508. (in Chinese))
    [7]
    张治亮, 徐卫亚, 王 伟. 向家坝水电站坝基挤压带岩石三轴蠕变试验及非线性黏弹塑性蠕变模型研究[J]. 岩石力学与工程学报, 2011, 30(1): 132-140. (ZHANG Zhi-liang, XU Wei-ya, WANG Wei. Study of triaxial creep tests and its nonlinear visco-elastoplastic creep model of rock from compressive zone of dam foundation in Xiangjiaba hydropower staion[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(1): 132-140. (in Chinese))
    [8]
    闫子舰, 夏才初, 李宏哲, 等. 分级卸荷条件下锦屏大理岩流变规律研究[J]. 岩石力学与工程学报, 2008, 27(10): 2153-2159. (YAN Zi-jian, XIA Cai-chu, LI Hong-zhe, et al. Study on rheological rules of marble in jinpi ng hydropower station under condition of step unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(10): 2153-2159. (in Chinese))
    [9]
    蒋昱州, 朱杰兵, 王瑞红. 软硬互层岩体卸荷蠕变力学特性试验研究[J]. 岩石力学与工程学报, 2012, 31(4): 778-784. (JIANG Yu-zhou, ZHU Jie-bing, WANG Rui-hong. Experimental study of unloading creep mechanical properties alternatively distributed soft and hard rockmass[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 778-784. (in Chinese))
    [10]
    夏才初, 闫子舰, 王晓东, 等. 大理岩卸荷条件下弹黏塑性本构关系研究[J]. 岩石力学与工程学报, 2009, 28(3): 459-466. (XIA Cai-chu, YAN Zi-jian, WANG Xiao-dong, et al. Experimental research on mechanical properties of limestone containing natural joints under loading and unloading conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(3): 459-466. (in Chinese))
    [11]
    朱杰兵, 汪 斌, 邬爱清. 锦屏水电站绿砂岩三轴卸荷流变试验及非线性损伤蠕变本构模型研究[J]. 岩石力学与工程学报, 2010, 29(3): 528-534. (ZHU Jie-bing, WANG Bin, WU Ai-qin. Study of unloading triaxial rheological tests and its nonlinear damage constitutive model of Jinping station green sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 528-534. (in Chinese))
    [12]
    谌文武, 原鹏博, 刘小伟. 分级加载下薄层状岩石蠕变特性研究[J]. 岩石力学与工程学报, 2009, 28(增刊1): 3076-3081. (CHEN Wen-wu, YUAN Peng-bo, LIU Xiao-wei, et al. Study on creep properties of red-bed soft rock under step load[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S1): 3076-3081. (in Chinese))
    [13]
    赵延林, 曹 平, 文有道, 等. 岩石弹黏塑性流变试验和非线性流变模型研究[J]. 岩石力学与工程学报, 2008, 27(3): 477-486. (ZHAO Yan-lin, CAO Ping, WEN You-dao, et al. Elastovisco-plastic rheological experiment and nonlinear rheological model of rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 477-486. (in Chinese))
  • Related Articles

    [1]HUANG Jue-hao, CHEN Jian, KE Wen-hui, ZHONG Yu, QIU Yue-feng. Coupling effects of bidirectional cyclic loading and loading frequency on pore water pressure of saturated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 71-74. DOI: 10.11779/CJGE2017S2018
    [2]WANG Ying-nan, CHEN Xi, WANG Dong-yong, YU Yu-zhen. Simplified soil water characteristic surface (SWCS) model and its applications to seepage analysis of unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 104-109. DOI: 10.11779/CJGE2016S2017
    [3]ZHANG Wei-hua, ZHAO Cheng-gang, FU Fang. Bounding-surface constitutive model for saturated sands based on phase transformation state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 930-939.
    [4]ZHOU Nianqing, TANG Yiqun, WANG Jianxiu, ZHANG Xi, HONG Jun. Response characteristics of pore pressure in saturated soft clay to the metro vibration loading[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2149-2152.
    [5]GUO Ying, LIU Yanhua, LUAN Maotian, XU Chengshun, HE Yang. Energy-based model of vibration-induced pore water pressure build-up of saturated loose sand under complex stress condition[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1380-1385.
    [6]SUN Rui, YUAN Xiaoming. Simplified incremental formula for estimating pore water pressure of saturated sands under anisotropic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(9): 1021-1025.
    [7]Li Wenping. Variation of pore water pressure and volume strain of saturated clayey soil during high pressure compression test[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 666-669.
    [8]Yan Lin, Li Shihai, Liu Yigang. A laboratory study on surface settlement of saturated sand caused by blasting[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(3): 50-53.
    [9]Shou Tsien I, Fu Shengcong. Pore water Pressure in Normally Consolidated Saturated Clays[J]. Chinese Journal of Geotechnical Engineering, 1988, 10(1): 1-7.
    [10]Li Wenyang, Liu Huishan. Influence of Pore Water Pressure on Shear Modulus and Damping Ratio of Saturated Sands[J]. Chinese Journal of Geotechnical Engineering, 1983, 5(4): 56-67.
  • Cited by

    Periodical cited type(37)

    1. 张昌桔,姚言,应宏伟,李冰河. 粉土地层双线平行顶管地面沉降及注浆压力数值研究. 地基处理. 2025(01): 60-68 .
    2. 王伟志,刘文壮,李朝煌,徐永福. 软土中浅埋顶管施工变形监测分析. 徐州工程学院学报(自然科学版). 2025(01): 1-6 .
    3. 张艳辉,纪海霞,程树辉,李张卿. 高密度建成区大型雨水管涵设计要点分析. 市政技术. 2025(04): 197-203 .
    4. 王开军,张伟,王玮鹏,窦保洋,徐荣超. 超浅覆土大断面矩形顶管近距离双线施工地表沉降规律及加固效果评价. 地质与勘探. 2024(01): 121-131 .
    5. 付增,范晓冬,魏旭鹏,李鹏,余长益. 基于结构分割法的顶管暗挖地铁站建造技术. 都市快轨交通. 2024(04): 88-95 .
    6. 万海峰,沈青松. 浅埋矩形顶管整体背土效应理论计算与分析. 市政技术. 2024(09): 129-134 .
    7. 马晓宾,苏栋,吴永照,吴炯,阳文胜,王雷,陈湘生. 浅埋矩形顶管背土效应全过程理论分析模型. 福州大学学报(自然科学版). 2024(05): 569-576 .
    8. 王虎,李栋,陈雪华,汪旭. 矩形顶管技术的应用与发展. 施工技术(中英文). 2023(01): 26-32 .
    9. 戢鸿鑫,刘跃军,张强,刘志寅,安峻彤,王耀正. 浅埋大断面矩形顶管下穿京杭大运河施工关键技术研究. 施工技术(中英文). 2023(07): 39-45 .
    10. 苏栋,吴炯,王雷,陈湘生,孙波,朱斌. 浅埋超大断面矩形顶管顶进对既有箱涵的影响. 广西大学学报(自然科学版). 2023(01): 1-9 .
    11. 黄建华,叶剑波. 大断面矩形顶管重力锚固基础力学特性分析. 人民长江. 2023(06): 140-146 .
    12. 张双茁,高桂庆,赖金星,张健伟,邱军领. MJS不同加固方式对降低顶管施工影响的效果分析. 建筑科学与工程学报. 2023(05): 183-191 .
    13. 甄亮,张显裕,李晓军. 浅埋矩形顶管整体背土效应判别方法应用与处理措施. 现代隧道技术. 2022(02): 167-171+181 .
    14. 兰彬,张鹏,张云龙,闫雪峰. 矩形顶管管周差异摩阻力对地层纵向水平位移的影响. 地质科技通报. 2022(03): 215-221 .
    15. 贾连辉,谌文涛,范磊,袁征. 特大断面矩形隧道掘进机关键系统设计与应用——结合嘉兴市长水路下穿南湖大道项目. 隧道建设(中英文). 2022(05): 917-928 .
    16. 马鹏,岛田英树,马保松,黄胜,周浩. 矩形顶管关键技术研究现状及发展趋势探讨. 隧道建设(中英文). 2022(10): 1677-1692 .
    17. 高浩,吴炯,阳文胜,苏栋,吴永照,陈湘生. 隔离墙对顶管顶进背土效应的抑制作用研究. 现代隧道技术. 2022(S1): 1120-1126 .
    18. 桂林,任睿祺,史培新,刘维. 浅埋矩形顶管施工引起的地层沉降变化规律. 城市轨道交通研究. 2022(12): 94-100 .
    19. 吴垠龙,刘维,贾鹏蛟,史培新. 矩形顶管近距离上穿既有隧道施工扰动分析. 地下空间与工程学报. 2022(06): 1968-1978 .
    20. 赵李勇. 浅埋矩形顶管施工顶推力动态监测分析. 建筑机械化. 2021(03): 13-16 .
    21. 陈志. 软弱地层浅埋矩形顶管沉降控制技术研究. 铁道建筑技术. 2021(08): 144-148 .
    22. 许有俊,黄正东,张旭,张朝,康佳旺,周薇. 大断面土压平衡矩形顶管多刀盘实测扭矩参数研究. 现代隧道技术. 2021(05): 96-103 .
    23. 李启旭,龚建伍,霍震. 浅埋矩形顶管施工地表沉降特性试验研究. 土工基础. 2021(06): 801-804 .
    24. 薛青松. 矩形顶管上穿地铁隧道施工对地表变形影响研究. 山西建筑. 2020(15): 9-11 .
    25. 李育发,李永江. 包头地下综合管廊矩形顶管施工关键技术及地表变形特征. 内蒙古科技大学学报. 2020(03): 289-293+299 .
    26. 薛广记,贾连辉,范磊,谌文涛. 大断面矩形掘进机土压平衡控制技术探究. 建筑机械化. 2020(10): 41-45 .
    27. 程鹏,高毅,于少辉,李洋. 结构分割转换工法结构体系安全性分析. 隧道建设(中英文). 2019(03): 435-443 .
    28. 苏明浩,高毅,程鹏. 关于结构分割转换工法不同分割方式的探讨. 隧道建设(中英文). 2019(03): 444-450 .
    29. 贺善宁,豆小天,赵李勇,崔现慧,王晋波,宝青峰. 浅埋矩形顶管群密贴施工的顶推力分析研究. 隧道建设(中英文). 2019(03): 383-390 .
    30. 高毅,冯超元,程鹏. 结构分割转换工法在地下空间开发中的应用及设想. 隧道建设(中英文). 2019(03): 398-406 .
    31. 豆小天,王贺昆,曹伟明,王晋波,赵李勇,冉敬鹏. 浅埋矩形顶管整体背土效应的原因分析与处理措施. 隧道建设(中英文). 2019(03): 473-479 .
    32. 李洋,高毅,于少辉,程鹏,罗雨田. 结构分割转换工法在地下车库建设中的应用研究. 隧道建设(中英文). 2019(03): 488-495 .
    33. 高毅,于少辉,李洋,程鹏,罗雨田,冯超元. 大型地下空间的结构分割转换工法研究. 隧道建设(中英文). 2019(03): 480-487 .
    34. 李鹏,李洋,高毅,于少辉,李应飞. 基于“CC工法”的顶管隧道施工地表变形规律分析与研究. 隧道建设(中英文). 2019(11): 1838-1847 .
    35. 申洋,穆保岗. 矩形顶管施工对邻近基桩的附加荷载分析. 地下空间与工程学报. 2018(S2): 781-787+820 .
    36. 苏明浩,程鹏,高毅,于少辉,李洋. 基于CC工法建造的地下结构受力分析. 隧道建设(中英文). 2018(S2): 136-143 .
    37. 李永平,白静. 输电隧道浅埋矩形顶管在砂类土下的数值模拟分析. 内蒙古电力技术. 2018(06): 86-89 .

    Other cited types(10)

Catalog

    Article views (327) PDF downloads (320) Cited by(47)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return