• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021
Citation: ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021

Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure

More Information
  • Received Date: June 21, 2016
  • Published Date: October 24, 2017
  • Advection and diffusion are important mechanisms of contaminant transport through barriers. Whether flexible-wall permeameter and consolidated specimen must be used in the permeation or diffusion tests on soil-bentonite backfill under low consolidation pressure is still controversial. The soil-bentonite backfill is prepared according to the common construction procedure of cutoff walls. The hydraulic conductivity of the backfill is measured by a flexible-wall permeameter under effective consolidation pressures of 30, 50 and 100 kPa, respectively. The hydraulic conductivity and diffusion coefficient are also measured by rigid-wall column tests. Based on the theory of dynamic leaching tests, a dialysis method is proposed for quick measurement of the effective diffusion coefficient of the backfill. The results of flexible-wall tests show that the hydraulic conductivity of the backfill increases with the hydraulic gradient. There are initial hydraulic gradients ranging from 6.82 to 8 in the flexible-wall tests. The hydraulic conductivity decreases from 5.21×10-8 to 3.78×10-8 cm/s as the consolidation pressure increases from 30 to 100 kPa. Under the consolidation pressure of 10 kPa, the rigid-wall column tests give an initial hydraulic gradient of 5.67, a hydraulic conductivity of 7.14×10-8 cm/s, and an effective diffusion coefficient of 3.12×10-6 cm2/s. The backfill in the dialysis tests is not consolidated and the effective diffusion coefficient is 4.45×10-6 cm2/s. With a bentonite content of 6.02%, the hydraulic conductivity of the backfill decreases by 4 orders of magnitude, while the effective diffusion coefficient only decreases by about 50%, so diffusion will be the dominant contaminant transport process in soil-bentonite cutoff walls.
  • [1]
    BOHNHOFF G, SHACKELFORD C. Consolidation behavior of polymerized bentonite-amended backfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(5): 258-268.
    [2]
    YEO S, SHACKELFORD C D, EVANS J C. Consolidation and hydraulic conductivity of nine model soil-bentonite backfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(10): 1189-1198.
    [3]
    FILZ G M, HENRY L B, HESLIN G M, et al. Determining hydraulic conductivity of soil-bentonite using the API filter press[J]. Geotechnical Testing Journal, 2001, 24(1): 61-71.
    [4]
    HONG C S, SHACKELFORD C D, MALUSIS M A. Consolidation and hydraulic conductivity of zeolite-amended soil-bentonite backfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(1): 15-25.
    [5]
    MALUSIS M A, BARBEN E J, EVANS J C. Hydraulic conductivity and compressibility of soil-bentonite backfill amended with activated carbon[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(5): 664-672.
    [6]
    KHANDELWAL A, RABIDEAU A J, SHEN P. Analysis of diffusion and sorption of organic solutes in soil-bentonite barrier materials[J]. Environmental Science and Technology, 1998, 32(9): 1333-1339.
    [7]
    CASTELBAUM D, SHACKELFORD C D. Hydraulic conductivity of bentonite slurry mixed sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(12): 1941-1956.
    [8]
    张文杰, 贾文强, 张改革, 等. 黏土-膨润土屏障中氯离子对流扩散规律研究[J]. 岩土工程学报, 2013, 35(11): 2076-2081. (ZHANG Wen-jie, JIA Wen-qiang, ZHANG Gai-ge, et al. Research on advection and dispersion of Cl - in clay-bentonite barriers[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2076-2081. (in Chinese))
    [9]
    KROL M M, ROWE R K. Diffusion of TCE through soil-bentonite slurry walls[J]. Soil and Sediment Contamination, 2004, 13(1): 81-101.
    [10]
    ASTM D6910M—09 Standard test method for marsh funnel viscosity of clay construction slurries[S]. 2009.
    [11]
    ASTM D4380—12 Standard test method for density of bentonitic slurries[S]. 2012.
    [12]
    ASTM C143M—10 Standard test method for slump of hydraulic-cement concrete[S]. 2010.
    [13]
    ASTM D5084—10 Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter[S]. 2010.
    [14]
    FETER C W. Contaminant Hydrogeology[M]. Long Grove: Waveland Press, Inc, 1993.
    [15]
    ASTM C1308 Standard test method for accelerated leach test for diffusive releases from solidified waste and a computer program to model diffusive, fractional leaching from cylindrical waste forms[S]. 2008.
    [16]
    PESCATORE C. Improved expressions for modeling diffusive, fractional cumulative leaching from finite-size waste forms[J]. Waste Management, 1990, 10(2): 155-159.
    [17]
    张文杰, 楼晓红, 高佳雯. 高塌落度防渗墙填料扩散系数快速测定的透析试验[J]. 岩土力学, 待刊. (ZHANG Wen-jie, LOU Xiao-hong, GAO Jia-wen, A dialysis test for fast measurement of the diffusion coefficient of high slump backfill[J]. Rock and Soil Mechanics, in press. (in Chinese))
    [18]
    YEO S, SHACKELFORD C D, EVANS J C. Membrane behavior of model soil-bentonite backfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(4): 418-429.
  • Related Articles

    [1]AN Xiaoyu, WANG Fei, JI Wendong, ZHANG Yuting, LIU Xianpeng, LI Jiandong, YUAN Guangzong, BIAN Tianqi. Centrifugal model tests and numerical simulations of dragging motion state of Hall anchor[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 117-121. DOI: 10.11779/CJGE2024S10005
    [2]HOU Zhen-kun, TANG Meng-xiong, HU He-song, LIU Chun-lin, SU Ding-li. Physical model tests on bearing performance drilling with pre-stressed concrete pipe cased pile considering hole collapse[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 153-162. DOI: 10.11779/CJGE202201015
    [3]LÜ Xi-lin, ZENG Sheng, WANG Yuan-peng, MA Shao-kun, HUANG Mao-song. Physical model tests on stability of shield tunnel face in saturated gravel stratum[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 129-132. DOI: 10.11779/CJGE2019S2033
    [4]LIU Quan-sheng, LEI Guang-feng, PENG Xing-xin, WEI Lai. Shearing mechanical model and experimental verification of bolts in jointed rock mass[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 794-801. DOI: 10.11779/CJGE201805003
    [5]WANG Cheng-hua, WAN Zheng-yi, ZHANG Cheng-lin. Tests and numerical simulations of non-orthogonal rainfall infiltration on surfaces of unsaturated sand slopes[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1357-1364. DOI: 10.11779/CJGE201508001
    [6]CHENG Zhan-lin, DING Jin-hua, RAO Xi-bao, CHENG Yong-hui, XU Han. Physical model tests on expansive soil slopes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 716-723. DOI: 10.11779/CJGE201404016
    [7]WANG Zheng-xing, MIAO Lin-chang, WANG Ran-ran, WANG Fei, WANG Xiao-long. Physical model tests and PFC3D modeling of soil-pipe interaction in sands during tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 182-188. DOI: 10.11779/CJGE201401019
    [8]KONG De-sen, ZHANG Qiu-hua, SHI Ming-chen. Numerical simulation of model tests on inclined retaining piles in foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 408-411.
    [9]ZHOU Jian, CUI Jihong, JIA Mincai, SHI D. Numerical simulation of cone penetration test by discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1604-1610.
    [10]TANG Liexian, TANG Chunan, TANG Shibin, CUI Yinghao, SONG Li. Physical experiment and numerical simulation on effect of soundless cracking agent[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4): 437-441.
  • Cited by

    Periodical cited type(4)

    1. 宋威,王淑敏,高磊,赵岩. 高速铁路桥梁钻孔灌注桩承载特性影响因素研究. 高速铁路技术. 2025(01): 14-20+28 .
    2. 汪思源,张福友,梅国雄,肖良,巫志文. 岩溶区布袋灌注桩承载特性研究. 山东交通科技. 2025(01): 5-10 .
    3. 魏纲,王新,崔允亮,刁红国. 超长大直径变截面钢管复合桩竖向承载力算法. 地下空间与工程学报. 2022(03): 810-817 .
    4. 吴怡颖,马宏伟,姜晓强,童宇. 双盘挤扩桩的静承载特性试验研究. 四川建材. 2020(04): 61-63 .

    Other cited types(4)

Catalog

    Article views (308) PDF downloads (242) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return