• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Zheng-xing, MIAO Lin-chang, WANG Ran-ran, WANG Fei, WANG Xiao-long. Physical model tests and PFC3D modeling of soil-pipe interaction in sands during tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 182-188. DOI: 10.11779/CJGE201401019
Citation: WANG Zheng-xing, MIAO Lin-chang, WANG Ran-ran, WANG Fei, WANG Xiao-long. Physical model tests and PFC3D modeling of soil-pipe interaction in sands during tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 182-188. DOI: 10.11779/CJGE201401019

Physical model tests and PFC3D modeling of soil-pipe interaction in sands during tunnelling

More Information
  • Received Date: June 24, 2013
  • Published Date: January 20, 2014
  • A series of 1g physical model tests are carried out to investigate the tunnelling effects on existing pipelines. A tunnel is excavated directly underneath the existing pipeline. The tunneling-induced pipeline deformation mechanism and the stress field around the pipeline are studied. In addition, three-dimensional discrete element back-analyses (PFC3D) are conducted to improve the understanding of soil-pipe interaction problem. Based on the measured and computed results, change of the tunneling-induced stress, displacement, shear strain and bending moment in the existing pipeline are analyzed. The findings in this study can give theoretical basis for the reinforcement design of pipelines.
  • [1]
    CALVETTI F, PRISCO C D, NOVA R. Experimental and numerical analysis of Soil-Pipe interaction[J]. Geotechnical and Geoenvironmental Engineering, 2004, 130(12): 1292-1298.
    [2]
    GUO P J, STOLLE D F E. Lateral Pipe-Soil interaction in sand with reference to scale effect[J]. Geotechnical and Geoenvironmental Engineering, 2005, 131(3): 338-348.
    [3]
    YIMSIRL S, SOGA K, YOSHIZAKI K. Lateral and upward Soil-Pipeline interactions in sand for deep embedment conditions[J]. Geotechnical and Geoenvironmental Engineering, 2004, 130(8): 830-842.
    [4]
    TRAUTMAN C H, O’ROURKE T D. Lateral force- displacement response of buried pipe[J]. Geotechnical and Geoenvironmental Engineering, 1985, 111(9): 1077-1092.
    [5]
    VORSTER T E B. The effects of tunnelling on buried pipes[D]. Cambridge: Cambridge University, 2005.
    [6]
    魏 纲, 余振翼, 徐日庆. 顶管施工中相邻垂直交叉地下管线变形的三维有限元分析[J]. 岩石力学与工程学报, 2004, 23(15): 2527-2535. (WEI Gang, YU Zhen-yi, XU Ri-qing. 3D fem analysis on deformation of perpendicularly crossing buried pipeline in pipe jacking[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(15): 2527-2535. (in Chinese))
    [7]
    姜 玲, 汪中卫, 王旭东. 盾构开挖引起地下管线竖向位移的初参数法求解[J]. 南京工业大学学报, 2010, 4(32): 73-76. (JIANG Ling, WANG Zhong-wei, WANG Xu-dong. Initial parameter method for solving vertical displacement of buried pipelines caused by tunnel excavation[J]. Journal of Nanjing University of Technology, 2010, 4(32): 73-76. (in Chinese))
    [8]
    ATTWELL P B, YEATES J, SELBY A R. Soil movements induced by tunnelling and their effects on pipelines and structures[M]. London: Blackie and Son Ltd, 1986.
    [9]
    张坤勇, 王 宇, 艾英钵. 任意荷载下管土相互作用解答[J]. 岩土工程学报, 2010, 32(8): 1189-1193. (ZHANG Kun-yong,WANG Yu,AI Ying-bo. Analytical solution to interaction between pipelines and soils under arbitrary loads[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8): 1189-1193. (in Chinese))
    [10]
    KLAR A. Shell versus beam representation of pipes in the evaluation of tunnlling effects on pipelines[J]. Tunnelling and Underground Space Technology, 2008, 23(4): 431-437.
    [11]
    KLAR A, MARSHALL A M, SOGA K, et al. Tunnelling effects on jointed pipelines[J]. Canadian Geotechnical Journal, 2008, 45(1): 131-139.
    [12]
    KLAR A, VORSTER T E B, SOGA K, et al. Soil-pipe interaction due to tunnelling: comparison between Winkler and elastic continuum solutions[J]. Géotechnique, 2005, 55(6): 461-466.
    [13]
    KLAR A, VORSTER T E B, SOGA K, et al. Elasto-plastic solution for soil-pipe-tunnel interaction[J]. Geotechnical and Geoenvironmental Engineering, 2007, 133(7): 782-792.
    [14]
    VORSTER T E B, KLAR A, SOGA K, et al. Estimating the effects of tunnelling on existing pipelines[J]. Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1399-1410.
    [15]
    RANKINE W J. Ground movements resulting from urban tunneling: predictions and effects[C]// Conference of Engineering Geology of Underground Movements. Nottingham, 1988: 79-92.
    [16]
    MAIR R J, TAYLOR R N. Theme lecture: Bored tunnelling in the urban environment[C]// Proc Fourteenth International Conference on Soil Mechanics and Foundation Engineering. Hamburg, Balkema, 1997: 2353-2385.
    [17]
    周 健, 白彦峰, 张 昭, 等. 砂土中群桩室内模型试验及颗粒模拟研究[J]. 岩土工程学报, 2009, 31(8): 1276-1280. (ZHOU Jian, BAI Yan-feng, ZHANG Zhao, et al. Lab model tests and PEC2D modeling of pile groups in sands[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1276-1280. (in Chinese))
    [18]
    CELESTINO T B, GOMES R A M P, BORTOLUCCI A A. Errors in ground distortions due to settlement trough adjustment[J]. Tunnelling and Underground Space Technology, 2000, 15(1): 97-100.
    [19]
    MARSHALL A M, KLAR A, MAIR R J. Tunnelling beneath buried pipes-a view of soil strain and its effect on pipeline behavior[J]. Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1664-1672.
    [20]
    BRANSBY M F. Selection of p-y curves for the design of single laterally loaded piles[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(15): 1909-1926.
    [21]
    KAGAWA T, KRAFT L M. Lateral load-deflection relationship of piles subjected to dynamic loadings[J]. Soils and Foundations, 1980, 20(4): 19-35.
  • Cited by

    Periodical cited type(8)

    1. 王怀强,李孝波,王天虎,席书衡,宣雨童. 基于岩土竖向台阵开展场地地震反应研究的若干进展. 地震工程与工程振动. 2025(02): 50-63 .
    2. 范宏飞,王彦臻,陈炜昀,陈国兴,赵凯. 水平成层海床场地非线性地震反应的流-固弱耦合分析. 振动工程学报. 2025(04): 849-859 .
    3. 郭云峰. 岩土勘察中地震效应问题的研究. 科技与创新. 2023(13): 117-119+122 .
    4. 王永光,梁建文,巴振宁. 基于修正阻尼的土体非线性模型及其在Abaqus中的实现. 岩土力学. 2023(08): 2287-2296 .
    5. 陈国兴,夏高旭,王彦臻,金丹丹. 琼州海峡海床地震反应特性的一维非线性分析. 工程力学. 2022(05): 75-85 .
    6. 赵凯,夏高旭,王彦臻,赵丁凤,庄海洋,陈国兴. 土–地下结构相互作用的三维弱耦合有效应力分析法. 岩土工程学报. 2022(05): 861-869 . 本站查看
    7. 阮滨,吉瀚文,王苏阳,贺鸿俊,苗雨. 基于台阵观测的基岩地震动入射波分离方法及数值验证. 岩土力学. 2022(09): 2615-2623+2642 .
    8. 陈伟庚,刘洋,王栋,岳茂,张良. 西南山区铁路沿线反倾岩质边坡地震动力响应振动台试验研究. 铁道建筑. 2021(04): 93-96 .

    Other cited types(8)

Catalog

    Article views (436) PDF downloads (342) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return