• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Sheng-fu, YANG Ping, LIU Guan-rong, FAN Wen-hu. Micro pore change and fractal characteristics of artificial freeze thaw soft clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1254-1261. DOI: 10.11779/CJGE201607012
Citation: WANG Sheng-fu, YANG Ping, LIU Guan-rong, FAN Wen-hu. Micro pore change and fractal characteristics of artificial freeze thaw soft clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1254-1261. DOI: 10.11779/CJGE201607012

Micro pore change and fractal characteristics of artificial freeze thaw soft clay

More Information
  • Received Date: October 06, 2015
  • Published Date: July 24, 2016
  • In order to investigate the microscopic mechanism of thawing collapse and compression characteristics of soft clay, the thawing collapse tests, compression tests and mercury intrusion porosimetry (MIP) are adopted to study microscopic pore distribution and change of soft clay in Ningbo area during the period before and after freezing, thawing and compression. A method for pore diameter division of four kinds of soil samples is proposed, including undisturbed soil, melted soil, compressed undisturbed soil and compressed thawing soil. Through scanning electron microscopy and mercury intrusion tests, the microstructural changes of freeze-thaw soft clay are analyzed according to the fractal theory of mercury. The characteristics of pore diameter distribution of soft clay are investigated, and the pore volume and area distribution are calculated by the capacity dimension. The results show that the pore volume and area of soft clay both increase after melting. The pore volume and area of undisturbed soil and thawing soil both decrease after compression, and more than 80% of pore volume and area of soft clay are distributed in the micro pores and ultra-micro pores. Besides, fractal characteristics exist in the pore volume and area.
  • [1]
    吕海波, 汪 稔, 赵艳林, 等. 软土结构性破损的孔径分布试验研究[J]. 岩土力学, 2003, 24(4): 573-578. (LÜ Hai-bo, WANG Ren, ZHAO Yan-lin, et al. Study of structure characteristics evolution of soft clay by pore size distribution test[J]. Rock and Soil Mechanics, 2003, 24(4): 573-578. (in Chinese))
    [2]
    张 英, 邴 慧, 杨成松. 基于SEM和MIP的冻融循环对粉质黏土强度影响机制研究[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3597-3603. (ZHANG Ying, BING Hui, YANG Cheng-song. Influences of freeze-thaw cycles on mechanical porperties of silty clay based on SEM and MIP test[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3597-3603. (in Chinese))
    [3]
    薛 茹, 胡瑞林, 毛灵涛. 软土加固过程中微结构变化的分形研究[J]. 土木工程学报, 2006, 39(10): 87-91. (XUE Ru, HU Rui-lin, MAO Lin-tao. Fractal study on the microstructure variation of soft soils in consolidation process[J]. China Civil Engineering Journal, 2006, 39(10): 87-91. (in Chinese))
    [4]
    唐益群, 赵书凯, 杨 坪, 等. 饱和软黏土在地铁荷载作用下微结构定量化研究[J]. 土木工程学报, 2009, 42(8): 98-103. (TANG Yi-qun, ZHAO Shu-kai, Yang Ping, et al. Analysis of the microscopic behavior of saturated soft clays under cyclic loading[J]. China Civil Engineering Journal, 2009, 42(8): 98-103. (in Chinese))
    [5]
    周 晖, 房营光, 曾 铖. 广州饱和软土固结过程微孔隙变化的试验分析[J]. 岩土力学, 2010, 31(增刊1): 138-144. (ZHOU Hui, FANG Ying-guang, ZENG Cheng. Experimental analysis of micro pore change of Guangzhou saturated soft soil in consolidation process[J]. Rock and Soil Mechanics, 2010, 31(S1): 138-144. (in Chinese))
    [6]
    姜 岩, 雷华阳, 郑 刚, 等. 动荷载作用下结构性软土微结构变化的分形研究[J]. 岩土力学, 2010, 31(10): 3075-3080. (JIANG Yan, LEI Hua-yang, ZHENG Gang, et al. Fractal study of microstructure variation of structured clays under dynamic loading[J]. Rock and Soil Mechanics, 2010, 31(10): 3075-3080. (in Chinese))
    [7]
    谈云志, 孔令伟, 郭爱国, 等. 压实过程对红黏土的孔隙分布影响研究[J]. 岩土力学, 2010, 31(5): 1427-1430. (TAN Yun-zhi, KONG Ling-wei, GUO Ai-guo. Research on effect of compaction on pore size distribution of laterite soil[J]. Rock and Soil Mechanics, 2010, 31(5): 1427-1430. (in Chinese))
    [8]
    徐日庆, 邓祎文, 徐 波, 等. 基于 SEM 图像信息的软土三维孔隙率定量分析[J].地球科学与环境学报, 2015, 37(3): 104-110. (XU Ri-qing, DENG Yi-wen, XU Bo, et al. Quantitative analysis of soft clay three-dimensional porosity based on SEM image information[J]. Journal of Earth Sciences and Environment, 2015, 37(3): 104-110. (in Chinese))
    [9]
    TYLER S W, WHEATCRAFT S W. Fractal scaling of soil particle-size distributions: analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362-369.
    [10]
    许 勇, 张季超, 李伍平. 饱和软土微结构分形特征的试验研究[J]. 岩土力学, 2007, 28(增刊1): 49-52. (XU Yong, ZHANG Ji-chao, LI Wu-ping. Research on microstructure fractal features of the saturation soft soil[J]. Rock and Soil Mechanics , 2007, 28(S1): 49-52. (in Chinese))
    [11]
    王宝军, 施 斌, 刘志彬, 等. 基于GIS的黏性土微观结构的分形研究[J]. 岩土工程学报, 2004, 26(2): 244-247. (WANG Bao-jun, SHI Bin, LIU Zhi-bin, et al. Fractal study on microstructure of clayey soil by GIS[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 244-247. (in Chinese))
    [12]
    张先伟, 王常明, 李军霞, 等. 蠕变条件下软土微观孔隙变化特性[J]. 岩土力学, 2010, 31(4): 1061-1067. (ZHANG Xian-wei, WANG Chang-ming, LI Jun-xia, et al. Variation characteristics of softclaymicropore in the creep condition[J]. Rock and Soil Mechanics, 2010, 31(4): 1061-1067. (in Chinese))
    [13]
    尹振宇. 土体微观力学解析模型:进展及发展[J]. 岩土工程学报, 2013, 35(6): 993-1009. (YIN Zhen-yu. Micromechanics-based analytical model for soils: review and development[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 993-1009. (in Chinese))
    [14]
    李国玉, 马 巍, 穆彦虎, 等. 季节冻土区压实黄土湿陷特性研究进展与展望[J]. 冰川冻土, 2014, 36(4): 934-943. (LI Guo-yu, MA Wei, MU Yan-hu, et al. Progress and prospects of the research on collapsibility of compacted loess in seasonally frozen ground regions[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 934-943. (in Chinese)).
    [15]
    LAI Y, LI J, LI Q. Study on damage statistical constitutive model and stochastic simulation for warm ice-rich frozen silt[J]. Cold Regions Science and Technology, 2012, 71(2): 102-110.
    [16]
    GHAZAVI M, ROUSTAIE M. The influence of freeze-thaw cycles on the unconfined compressive strength of fiber-reinforced[J]. Cold Regions Science and Technology, 2010, 61(2/3): 125-131.
    [17]
    王天亮, 卜建清, 王 扬, 等. 多次冻融条件下土体的融沉性质研究[J]. 岩土工程学报, 2014, 36(4): 625-632. (WANG Tian-liang, BU Jian-qing, WANG Yang, et al. Thaw subsidence properties of soils under repeated freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 625-632. (in Chinese))
    [18]
    穆彦虎, 马 巍, 李国玉, 等. 冻融作用对压实黄土结构影响的微观定量研究[J]. 岩土工程学报, 2011, 33(12): 1919-1925. (MU Yan-hu, MA Wei, LI Guo-yu, et al. Quantitative analysis of impacts of freeze-thaw cycles upon microstructureof compacted loess[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1919-1925. (in Chinese))
    [19]
    TORRANCE J K, ELLIOT T, MARTIN R, et al. X-ray computed tomography of frozen soil[J]. Cold Regions Science and Technology, 2008, 53(1): 75-82.
    [20]
    郑剑锋, 马 巍, 赵淑萍, 等. 三轴压缩条件下基于CT实时监测的冻结兰州黄土细观损伤变化研究[J]. 冰川冻土, 2011, 33(4): 839-845. (ZHENG Jian-feng, MA Wei, ZHAO Shu-ping, et al. Study of meso-damage changes of frozenLanzhou loess under triaxial compression based on CTreal-time monitoring[J]. Journal of Glaciology and Geocryology, 2011, 33(4): 839-845. (in Chinese)).
    [21]
    陈世杰, 赵淑萍, 马 巍, 等. 利用CT扫描技术进行冻土研究的现状和展望[J]. 冰川冻土, 2013, 35(1): 193-200. (CHEN Shi-jie, ZHAO Shu-ping, MA Wei, et al. Studying frozen soil with ct technology: present studies and prospects[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 193-200. (in Chinese))
    [22]
    唐益群, 沈 峰, 胡向东, 等. 上海地区冻融后暗绿色粉质黏土动本构关系与微结构研究[J]. 岩土工程学报, 2005, 27(10): 1249-1252. (TANG Yi-qun, SHEN Feng, HU Xiang-dong, et al. Study on dynamic constitutive relation and microstructure of melted dark green silty soil in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1249-1252. (in Chinese))
    [23]
    洪 军. 人工冻结条件下上海饱和软黏土的力学特性试验研究[D]. 上海: 同济大学, 2008. (HONG Jun. The mechanical properties tests of stuarted silty soft clay in Shanghai under artificial freezing method[D]. Shanghai: Tongji University, 2008. (in Chinese))
    [24]
    WASHBURN E W. Note on a method of determining the distribution of pore sizes in a porous material[J]. Proceedings of the National Academy of Sciences, 1921, 7: 115-116.
    [25]
    杨 平, 张 婷. 人工冻融土物理力学性能研究[J]. 冰川冻土, 2002, 4(5): 665-667. (YANG Ping, ZHANG Ting. The physical and the mechanical properties of original and frozen-thawed soil[J]. Journal of Glaciology and Geocryology, 2002, 4(5): 665-667. (in Chinese)).
    [26]
    SHEAR D L, OLSEN H W, NELSON K R. Effects of desiccation on the hydraulic conductivity versus void ratio relationship for a natural clay[R]. Washington D C: Transportation research record, NRC National academy press. 1993: 1365-1370.
    [27]
    张先伟, 孔令伟. 利用扫描电镜、压汞法、氮气吸附法评价近海黏土孔隙特征[J]. 岩土力学, 2013, 34(增刊2): 134-142. (ZHANG Xian-wei, KONG Ling-wei. Study of pore characteristics of offshore clay by SEM and MIP and NA methods[J]. Rock and Soil Mechanics, 2013, 34(S2): 134-142. (in Chinese))
  • Related Articles

    [1]AN Xiaoyu, WANG Fei, JI Wendong, ZHANG Yuting, LIU Xianpeng, LI Jiandong, YUAN Guangzong, BIAN Tianqi. Centrifugal model tests and numerical simulations of dragging motion state of Hall anchor[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 117-121. DOI: 10.11779/CJGE2024S10005
    [2]HOU Zhen-kun, TANG Meng-xiong, HU He-song, LIU Chun-lin, SU Ding-li. Physical model tests on bearing performance drilling with pre-stressed concrete pipe cased pile considering hole collapse[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 153-162. DOI: 10.11779/CJGE202201015
    [3]LÜ Xi-lin, ZENG Sheng, WANG Yuan-peng, MA Shao-kun, HUANG Mao-song. Physical model tests on stability of shield tunnel face in saturated gravel stratum[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 129-132. DOI: 10.11779/CJGE2019S2033
    [4]LIU Quan-sheng, LEI Guang-feng, PENG Xing-xin, WEI Lai. Shearing mechanical model and experimental verification of bolts in jointed rock mass[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 794-801. DOI: 10.11779/CJGE201805003
    [5]WANG Cheng-hua, WAN Zheng-yi, ZHANG Cheng-lin. Tests and numerical simulations of non-orthogonal rainfall infiltration on surfaces of unsaturated sand slopes[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1357-1364. DOI: 10.11779/CJGE201508001
    [6]CHENG Zhan-lin, DING Jin-hua, RAO Xi-bao, CHENG Yong-hui, XU Han. Physical model tests on expansive soil slopes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 716-723. DOI: 10.11779/CJGE201404016
    [7]WANG Zheng-xing, MIAO Lin-chang, WANG Ran-ran, WANG Fei, WANG Xiao-long. Physical model tests and PFC3D modeling of soil-pipe interaction in sands during tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 182-188. DOI: 10.11779/CJGE201401019
    [8]KONG De-sen, ZHANG Qiu-hua, SHI Ming-chen. Numerical simulation of model tests on inclined retaining piles in foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 408-411.
    [9]ZHOU Jian, CUI Jihong, JIA Mincai, SHI D. Numerical simulation of cone penetration test by discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1604-1610.
    [10]TANG Liexian, TANG Chunan, TANG Shibin, CUI Yinghao, SONG Li. Physical experiment and numerical simulation on effect of soundless cracking agent[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4): 437-441.
  • Cited by

    Periodical cited type(4)

    1. 宋威,王淑敏,高磊,赵岩. 高速铁路桥梁钻孔灌注桩承载特性影响因素研究. 高速铁路技术. 2025(01): 14-20+28 .
    2. 汪思源,张福友,梅国雄,肖良,巫志文. 岩溶区布袋灌注桩承载特性研究. 山东交通科技. 2025(01): 5-10 .
    3. 魏纲,王新,崔允亮,刁红国. 超长大直径变截面钢管复合桩竖向承载力算法. 地下空间与工程学报. 2022(03): 810-817 .
    4. 吴怡颖,马宏伟,姜晓强,童宇. 双盘挤扩桩的静承载特性试验研究. 四川建材. 2020(04): 61-63 .

    Other cited types(4)

Catalog

    Article views (483) PDF downloads (477) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return