Citation: | HOU Bing, CHEN Mian, CHENG Wan, TAN Peng. Fracturing mechanism of shale gas reservoir with variable pump rates[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2149-2152. DOI: 10.11779/CJGE201411023 |
[1] |
DANESHY A A. Hydraulic fracture propagation in the presence of planes of weakness[R]. SPE 4852, 1974.
|
[2] |
WARPINSKI N R, TEUFEL L W. Influence of geologic discontinuities on hydraulic fracture propagation[J]. Journal of Petroleum Technology, 1987, 39(2): 209-220.
|
[3] |
RENSHAW C E, POLLARD D D. An experimentally verified criterion for propagation across unbounded frictional interfaces in brittle, linear elastic materials[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(3): 237-249.
|
[4] |
ZHOU J, XUE Cheng-jin. Experimental investigation of fracture interaction between natural fractures and hydraulic fracture in naturally fractured reservoirs[C]// Annual of Conference Exhibition and Society of Petroleum Engineering, 2011.
|
[5] |
ZHOU Jian, CHEN Mian, JIN Yan, et al. Analysis of fracture propagation behavior and fracture geometry using a tri-axial fracturing system in naturally fractured reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(7): 1143-1152.
|
[6] |
TALEGHANI A D, OLSON J E. Numerical modeling of multistranded-hydraulic fracture propagation: Accounting for the interaction between induced and natural fractures[J]. SPE Journal, 2011, 16(3): 575-581.
|
[7] |
TALEGHANI A D. Modeling simultaneous growth of multi-branch hydraulic fractures[C]// ARMA. San Francisco, 2011.
|
[8] |
GU H, WENG X. Criterion for fractures crossing frictional interfaces at nonorthogonal angles[C]// ARMA. Salt Lake City, 2010.
|
[9] |
CHENG Wan, JIN Yan, CHEN Mian, et al. A criterion for a hydraulic fracture crossing a natural fracture in a 3D space and its field application[J]. Petroleum Exploration & Development, 2014, 41(2): 1-6.
|
[10] |
ZHAO Hai-feng, CHEN Mian, JIN Yan, et al. Rock fracture kinetics of the fracture mesh system in shale gas reservoirs[J]. Petroleum Exploration and Development, 2012, 39(4): 465-470.
|
[11] |
陈 勉. 页岩气储层水力裂缝转向扩展机制[J]. 中石油大学学报(自然科学版), 2013,37(5): 88-94. (CHEN Mian. Re-orientation and propagation of hydraulic fractures in shale gas reservoir[J]. Journal of China University of Petroleum. 2013, 37(5): 88-94. (in Chinese))
|
[12] |
柳贡慧, 庞 飞, 陈治喜. 水力压裂模拟试验中的相似准则[J]. 石油大学学报(自然科学版), 2000, 24(5): 45-50. (LIU Gong-hui, PANG Fei, CHEN Zhi-xi. Fracture simulation tests[J]. Journal of China University of Petroleum. 2000, 24(5): 45-50. (in Chinese))
|
[1] | CHENG Xuesong, ZHANG Runze, ZHENG Gang, WANG Ruozhan, ZHANG Yong, TU Jie, MA Yunkang. Experimental study on progressive collapse of tied-back retaining system of excavations induced by partial over-excavation or surcharge loading[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2078-2088. DOI: 10.11779/CJGE20230718 |
[2] | ZHENG Gang, YI Fan, HUANG Tian-ming, CHENG Xue-song, YU Dan-yao, LEI Ya-wei, WANG Ruo-zhan. Mechanism of overturning progressive collapse of excavations retained by double-row piles induced by over-excavation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1373-1381. DOI: 10.11779/CJGE202108001 |
[3] | CHENG Xue-song, ZHENG Gang, HUANG Tian-ming, DENG Chu-han, NIE Dong-qing, LIU Jie. Experimental study on mechanism of progressive collapse along length of excavation retained by cantilever contiguous piles[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1640-1649. DOI: 10.11779/CJGE201609011 |
[4] | LÜ Ya-ru, LIU Han-long, WANG Ming-yang, LI Ping. Theoretical analyses of load transfer mechanism for special pile foundations[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 212-217. DOI: 10.11779/CJGE2015S1040 |
[5] | ZHENG Gang, CUI Tao, JIANG Xiao-ting. Mechanism of progressive collapse induced by partial failure of shield tunnels in sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1556-1571. DOI: 10.11779/CJGE201509002 |
[6] | CHENG Xue-song, ZHENG Gang, DENG Chu-han, HUANG Tian-ming, NIE Dong-qing. Mechanism of progressive collapse induced by partial failure of cantilever contiguous retaining piles[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1249-1263. DOI: 10.11779/CJGE201507011 |
[7] | ZHANG Hao, SHI Ming-lei, LIU Wei-zheng, ZHAO Yu. Load effect of sparse capped-piles and soils in treating foundations under embankments[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1758-1765. |
[8] | XING Hao-feng, MENG Ming-hui, LUO Yong, YE Guan-bao, HE Wen-yong. Load transfer mechanism and failure characteristics of piles embedded in soft rock[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 355-361. |
[9] | SHI Feng. Experimental research on load transfer mechanism of pretensioned high strength spun concrete piles[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 95-99. |
[10] | ZHANG Jiru, TANG Baofu. Hyperbolic function model to analyze load transfer mechanism on bolts[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 188-192. |
1. |
蒋家卫,李文彪,赵雅芝,陈国兴,杜修力. 场地均质性对浅埋地铁车站地下结构地震易损性的影响. 振动与冲击. 2024(06): 151-156+178 .
![]() | |
2. |
韩俊艳,李玉凤,钟紫蓝,缪惠全,杜修力. 不同场地条件下埋地腐蚀钢管地震易损性评价. 岩土工程学报. 2024(04): 774-783 .
![]() | |
3. |
林峻岑,孙纬宇,李国玉,严松宏,佟浩. 基于矢量IMs的浅埋偏压黄土隧道地震易损性. 东南大学学报(自然科学版). 2024(02): 432-440 .
![]() | |
4. |
蒋家卫,黄文婷,赵凯,陈国兴,杜修力. 典型浅埋矩形框架地铁车站地下结构地震易损性分析. 工程力学. 2024(09): 9-17 .
![]() | |
5. |
郭志辉. 复杂高层建筑结构抗震设计方法研究. 砖瓦. 2023(03): 95-97 .
![]() | |
6. |
谭灿星,周瑾. 两层三跨岛式地铁车站的地震响应研究. 广东土木与建筑. 2023(04): 73-77 .
![]() | |
7. |
谢宏飞,蔡海兵. 地铁地下车站抗震研究主要方法与现状. 建井技术. 2023(06): 85-90 .
![]() |