• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HOU Bing, CHEN Mian, CHENG Wan, TAN Peng. Fracturing mechanism of shale gas reservoir with variable pump rates[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2149-2152. DOI: 10.11779/CJGE201411023
Citation: HOU Bing, CHEN Mian, CHENG Wan, TAN Peng. Fracturing mechanism of shale gas reservoir with variable pump rates[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2149-2152. DOI: 10.11779/CJGE201411023

Fracturing mechanism of shale gas reservoir with variable pump rates

More Information
  • Received Date: April 08, 2014
  • Published Date: November 19, 2014
  • Strengthening the interaction between hydraulic fractures and natural fractures by the adjustment of pump pressure is the key of fracture network. Longmaxi shale outcrops are selected to study the propagation of hydraulic fractures and the interaction between hydraulic fractures and natural fractures by utilizing tri-axial fracturing test system. The pump pressure increases in a step-wise manner during the tests. The experimental results indicate that the variable pump rates can gradually build the pressure, which generates many under-fracture points in weak planes around the wellbore. Hydraulic fractures will have dynamic extension along these under-fracture points when there is a sudden increase of pump rate. As the pump rate increases in a step-wise manner, the pump pressure significantly increases. Higher pump rate leads to a more fluctuant pump pressure and a more complex fracture network. The occurrence and geometric distribution of natural fractures and net pressure can influence the degree of further interaction. The results prove that the variable pump rates can activate more natural fractures, which contributes to form complex fracture network.
  • [1]
    DANESHY A A. Hydraulic fracture propagation in the presence of planes of weakness[R]. SPE 4852, 1974.
    [2]
    WARPINSKI N R, TEUFEL L W. Influence of geologic discontinuities on hydraulic fracture propagation[J]. Journal of Petroleum Technology, 1987, 39(2): 209-220.
    [3]
    RENSHAW C E, POLLARD D D. An experimentally verified criterion for propagation across unbounded frictional interfaces in brittle, linear elastic materials[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(3): 237-249.
    [4]
    ZHOU J, XUE Cheng-jin. Experimental investigation of fracture interaction between natural fractures and hydraulic fracture in naturally fractured reservoirs[C]// Annual of Conference Exhibition and Society of Petroleum Engineering, 2011.
    [5]
    ZHOU Jian, CHEN Mian, JIN Yan, et al. Analysis of fracture propagation behavior and fracture geometry using a tri-axial fracturing system in naturally fractured reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(7): 1143-1152.
    [6]
    TALEGHANI A D, OLSON J E. Numerical modeling of multistranded-hydraulic fracture propagation: Accounting for the interaction between induced and natural fractures[J]. SPE Journal, 2011, 16(3): 575-581.
    [7]
    TALEGHANI A D. Modeling simultaneous growth of multi-branch hydraulic fractures[C]// ARMA. San Francisco, 2011.
    [8]
    GU H, WENG X. Criterion for fractures crossing frictional interfaces at nonorthogonal angles[C]// ARMA. Salt Lake City, 2010.
    [9]
    CHENG Wan, JIN Yan, CHEN Mian, et al. A criterion for a hydraulic fracture crossing a natural fracture in a 3D space and its field application[J]. Petroleum Exploration & Development, 2014, 41(2): 1-6.
    [10]
    ZHAO Hai-feng, CHEN Mian, JIN Yan, et al. Rock fracture kinetics of the fracture mesh system in shale gas reservoirs[J]. Petroleum Exploration and Development, 2012, 39(4): 465-470.
    [11]
    陈 勉. 页岩气储层水力裂缝转向扩展机制[J]. 中石油大学学报(自然科学版), 2013,37(5): 88-94. (CHEN Mian. Re-orientation and propagation of hydraulic fractures in shale gas reservoir[J]. Journal of China University of Petroleum. 2013, 37(5): 88-94. (in Chinese))
    [12]
    柳贡慧, 庞 飞, 陈治喜. 水力压裂模拟试验中的相似准则[J]. 石油大学学报(自然科学版), 2000, 24(5): 45-50. (LIU Gong-hui, PANG Fei, CHEN Zhi-xi. Fracture simulation tests[J]. Journal of China University of Petroleum. 2000, 24(5): 45-50. (in Chinese))
  • Related Articles

    [1]CHENG Xuesong, ZHANG Runze, ZHENG Gang, WANG Ruozhan, ZHANG Yong, TU Jie, MA Yunkang. Experimental study on progressive collapse of tied-back retaining system of excavations induced by partial over-excavation or surcharge loading[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2078-2088. DOI: 10.11779/CJGE20230718
    [2]ZHENG Gang, YI Fan, HUANG Tian-ming, CHENG Xue-song, YU Dan-yao, LEI Ya-wei, WANG Ruo-zhan. Mechanism of overturning progressive collapse of excavations retained by double-row piles induced by over-excavation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1373-1381. DOI: 10.11779/CJGE202108001
    [3]CHENG Xue-song, ZHENG Gang, HUANG Tian-ming, DENG Chu-han, NIE Dong-qing, LIU Jie. Experimental study on mechanism of progressive collapse along length of excavation retained by cantilever contiguous piles[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1640-1649. DOI: 10.11779/CJGE201609011
    [4]LÜ Ya-ru, LIU Han-long, WANG Ming-yang, LI Ping. Theoretical analyses of load transfer mechanism for special pile foundations[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 212-217. DOI: 10.11779/CJGE2015S1040
    [5]ZHENG Gang, CUI Tao, JIANG Xiao-ting. Mechanism of progressive collapse induced by partial failure of shield tunnels in sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1556-1571. DOI: 10.11779/CJGE201509002
    [6]CHENG Xue-song, ZHENG Gang, DENG Chu-han, HUANG Tian-ming, NIE Dong-qing. Mechanism of progressive collapse induced by partial failure of cantilever contiguous retaining piles[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1249-1263. DOI: 10.11779/CJGE201507011
    [7]ZHANG Hao, SHI Ming-lei, LIU Wei-zheng, ZHAO Yu. Load effect of sparse capped-piles and soils in treating foundations under embankments[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1758-1765.
    [8]XING Hao-feng, MENG Ming-hui, LUO Yong, YE Guan-bao, HE Wen-yong. Load transfer mechanism and failure characteristics of piles embedded in soft rock[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 355-361.
    [9]SHI Feng. Experimental research on load transfer mechanism of pretensioned high strength spun concrete piles[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 95-99.
    [10]ZHANG Jiru, TANG Baofu. Hyperbolic function model to analyze load transfer mechanism on bolts[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 188-192.
  • Cited by

    Periodical cited type(7)

    1. 蒋家卫,李文彪,赵雅芝,陈国兴,杜修力. 场地均质性对浅埋地铁车站地下结构地震易损性的影响. 振动与冲击. 2024(06): 151-156+178 .
    2. 韩俊艳,李玉凤,钟紫蓝,缪惠全,杜修力. 不同场地条件下埋地腐蚀钢管地震易损性评价. 岩土工程学报. 2024(04): 774-783 . 本站查看
    3. 林峻岑,孙纬宇,李国玉,严松宏,佟浩. 基于矢量IMs的浅埋偏压黄土隧道地震易损性. 东南大学学报(自然科学版). 2024(02): 432-440 .
    4. 蒋家卫,黄文婷,赵凯,陈国兴,杜修力. 典型浅埋矩形框架地铁车站地下结构地震易损性分析. 工程力学. 2024(09): 9-17 .
    5. 郭志辉. 复杂高层建筑结构抗震设计方法研究. 砖瓦. 2023(03): 95-97 .
    6. 谭灿星,周瑾. 两层三跨岛式地铁车站的地震响应研究. 广东土木与建筑. 2023(04): 73-77 .
    7. 谢宏飞,蔡海兵. 地铁地下车站抗震研究主要方法与现状. 建井技术. 2023(06): 85-90 .

    Other cited types(8)

Catalog

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return