WANG Tao, JI Jian. DEM analysis of mechanism and evolution of horizontal soil arching between piles in sand slopes[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1742-1752. DOI: 10.11779/CJGE20230309
    Citation: WANG Tao, JI Jian. DEM analysis of mechanism and evolution of horizontal soil arching between piles in sand slopes[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1742-1752. DOI: 10.11779/CJGE20230309

    DEM analysis of mechanism and evolution of horizontal soil arching between piles in sand slopes

    More Information
    • Received Date: April 10, 2023
    • Available Online: August 11, 2024
    • The non-continuous retaining structures such as anti-slide piles rely on the soil arching effects to provide support safely and economically in slope engineering. Considering the significant differences in the mechanical properties of sands, to reveal the mechanism and evolution patterns of horizontal soil arching between piles in sand slopes, the discrete element method (DEM) is used to simulate the formation process of horizontal soil arching. On the basis of the traditional force chain analysis, it is proposed to study the formation process of soil arching by screening high stress particles. Furthermore, the analysis of the soil arching effects under different conditions from a microscopic point of view is conducted to reveal the evolution process of "stress arching" and "displacement arching". The results demonstrate that the dynamic evolution of horizontal arching in both dense and loose sands can be divided into three evolutionary stages, corresponding to the shear behaviors of the two sands, i.e., strain softening and strain hardening phenomena, which reveals the evolution patterns of the soil arching effects in the sand slopes. Additionally, the influences of macro-micro DEM simulation parameters on the arching process and performance are discussed. The results indicate that the arching span has the greatest impact on the load transfer efficiency.
    • [1]
      TERZAGHI K V. The shearing resistance of saturated soils and the angle between the planes of shear[C]// First International Conference on Soil Mechanics, Cambridge, 1936.
      [2]
      LOW B, TANG S, CHOA V. Arching in piled embankments[J]. Journal of Geotechnical Engineering, 1994, 120(11): 1917-1938. doi: 10.1061/(ASCE)0733-9410(1994)120:11(1917)
      [3]
      芮瑞, 黄成, 夏元友, 等. 砂填料桩承式路堤土拱效应模型试验[J]. 岩土工程学报, 2013, 35(11): 2082-2089. http://cge.nhri.cn/cn/article/id/15340

      RUI Rui, HUANG Cheng, XIA Yuanyou, et al. Model tests on soil arching effects of piled embankments with sand fills[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2082-2089. (in Chinese) http://cge.nhri.cn/cn/article/id/15340
      [4]
      钟卫, 张帅, 贺拿. 基于相对变形方法的桩后土拱模型试验研究[J]. 岩土力学, 2022, 43(增刊2): 315-326. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2022S2032.htm

      ZHONG Wei, ZHANG Shuai, HE Na. Experimental study on soil arch behind anti-slide pile based on relative deformation method[J]. Rock and Soil Mechanics, 2022, 43(S2): 315-326. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2022S2032.htm
      [5]
      蒋明镜, 杜文浩, 奚邦禄. 净砂与胶结砂土Trapdoor试验离散元数值模拟[J]. 地球科学与环境学报, 2018, 40(3): 347-354. doi: 10.3969/j.issn.1672-6561.2018.03.011

      JIANG Mingjing, DU Wenhao, XI Banglu. Distinct element numerical simulation of trapdoor tests for pure and cemented sands[J]. Journal of Earth Sciences and Environment, 2018, 40(3): 347-354. (in Chinese) doi: 10.3969/j.issn.1672-6561.2018.03.011
      [6]
      吕庆, 孙红月, 尚岳全. 抗滑桩桩后土拱形状及影响因素[J]. 哈尔滨工业大学学报, 2010, 42(4): 629-633. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201004028.htm

      LÜ Qing, SUN Hongyue, SHANG Yuequan. Shape of soil arch behind anti-slide piles and its major influence factors[J]. Journal of Harbin Institute of Technology, 2010, 42(4): 629-633. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201004028.htm
      [7]
      BOSSCHER P J, GRAY D H. Soil arching in sandy slopes[J]. Journal of Geotechnical Engineering, 1986, 112(6): 626-645. doi: 10.1061/(ASCE)0733-9410(1986)112:6(626)
      [8]
      向先超, 张华, 蒋国盛, 等. 基于颗粒流的抗滑桩土拱效应研究[J]. 岩土工程学报, 2011, 33(3): 386-391. http://cge.nhri.cn/cn/article/id/13952

      XIANG Xianchao, ZHANG Hua, JIANG Guosheng, et al. Soil arching effect of anti-slide piles based on particle flow method[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 386-391. (in Chinese) http://cge.nhri.cn/cn/article/id/13952
      [9]
      GENG Z, JIN D, YUAN D. Face stability analysis of cohesion-frictional soils considering the soil arch effect and the instability failure process[J]. Computers and Geotechnics, 2023, 153: 105050. doi: 10.1016/j.compgeo.2022.105050
      [10]
      林治平, 刘祚秋, 商秋婷. 抗滑桩结构土拱的分拆与联合研究[J]. 岩土力学, 2012, 33(10): 3109-3114. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210038.htm

      LIN Zhiping, LIU Zuoqiu, SHANG Qiuting. Research on soil arch of anti-slide pile structure with methods of separation and combination[J]. Rock and Soil Mechanics, 2012, 33(10): 3109-3114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210038.htm
      [11]
      蒋明镜. 现代土力学研究的新视野——宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. doi: 10.11779/CJGE201902001

      JIANG Mingjing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) doi: 10.11779/CJGE201902001
      [12]
      LI L, WU W, EL NAGGAR M H, et al. DEM analysis of the sand plug behavior during the installation process of open-ended pile[J]. Computers and Geotechnics, 2019, 109: 23-33. doi: 10.1016/j.compgeo.2019.01.014
      [13]
      JIANG M, KONRAD J, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597. doi: 10.1016/S0266-352X(03)00064-8
      [14]
      MINH N H, CHENG Y P. A DEM investigation of the effect of particle-size distribution on one-dimensional compression[J]. Géotechnique, 2013, 63(1): 44-53. doi: 10.1680/geot.10.P.058
      [15]
      JI J, WANG T, ZHANG T, et al. DEM analysis of dynamic evolutions of lateral soil arching in sandy soil[J]. Journal of Engineering Mechanics, 2023, 149(6): 04023033. doi: 10.1061/JENMDT.EMENG-7108
      [16]
      LAI H J, ZHENG J J, CUI M J, et al. "Soil arching" for piled embankments: insights from stress redistribution behaviour of DEM modelling[J]. Acta Geotechnica, 2020, 15(8): 2117-2136. doi: 10.1007/s11440-019-00902-x
      [17]
      TANG H, HU X, XU C, et al. A novel approach for determining landslide pushing force based on landslide-pile interactions[J]. Engineering Geology, 2014, 182: 15-24. doi: 10.1016/j.enggeo.2014.07.024
      [18]
      尹小涛, 郑亚娜, 马双科. 基于颗粒流数值试验的岩土材料内尺度比研究[J]. 岩土力学, 2011, 32(4): 1211-1215. doi: 10.3969/j.issn.1000-7598.2011.04.043

      YIN Xiaotao, ZHENG Yana, MA Shuangke. Study of inner scale ratio of rock and soil material based on numerical tests of particle flow code[J]. Rock and Soil Mechanics, 2011, 32(4): 1211-1215. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.04.043
      [19]
      CHANG X, WANG Y T, ZHOU W, et al. The influence of rotational resistance on critical state of granular materials[C]// Proceedings of the 7th International Conference on Discrete Element Methods. Singapore, 2017.
      [20]
      蒋明镜, 李秀梅, 胡海军. 含抗转能力散粒体的宏微观力学特性数值分析[J]. 计算力学学报, 2011, 28(4): 622-628. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201104024.htm

      JIANG Mingjing, LI Xiumei, HU Haijun. Numerical analysis of macro and micro mechanical properties of granular particles with anti-rotation capacity[J]. Chinese Journal of Computational Mechanics, 2011, 28(4): 622-628. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201104024.htm
      [21]
      吕玺琳, 庞博, 朱长根, 等. 桩承式路堤桩土荷载分担特性物理模型试验研究[J]. 岩土工程学报, 2022, 44(增刊2): 50-53. doi: 10.11779/CJGE2022S2011

      LÜ Xilin, PANG Bo, ZHU Changgen, et al. Physical model tests on load-sharing characteristics of piles and soils in pile-supported embankment[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 50-53. (in Chinese) doi: 10.11779/CJGE2022S2011
    • Related Articles

      [1]CAO Yang, LIU Yang, ZHANG Chaoyu, YANG Junjie, LI Guozheng. Synchronous grouting diffusion and parameter optimization of shield tunnels based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2119-2128. DOI: 10.11779/CJGE20230726
      [2]WANG Le, LI Yu, XU Zhijun, LIU Bo, ZHANG Chunhui, TIAN Yinghui. Discrete element study of method for installation forces of screw piles in sand under different advancement ratios[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1166-1176. DOI: 10.11779/CJGE20230204
      [3]Research on structural carbon dioxide hydrate bearing clay simulations with discrete element method[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240141
      [4]SHEN Zhi-fu, ZHANG Xu-yin, GAO Feng, WANG Zhi-hua, GAO Hong-mei. Discrete element method for clay considering irregular planar shape of clay platelets[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1654-1662. DOI: 10.11779/CJGE202209010
      [5]LIU Su, WANG Jian-feng. An approach for modelling particle breakage based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1706-1713. DOI: 10.11779/CJGE201809018
      [6]ZHANG Ke-fen, ZHANG Sheng, TENG Ji-dong, SHENG Dai-chao. Influences of self-organization of granular materials on particle crushing based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 743-751. DOI: 10.11779/CJGE201804019
      [7]ZHANG Cheng-lin, ZHOU Xiao-wen. Algorithm for modelling three-dimensional shape of sand based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 115-119. DOI: 10.11779/CJGE2015S1023
      [8]JIANG Ming-jing, LI Lei, ZHOU Ya-ping. Bearing properties of deep-sea methane hydrate-bearing foundation by discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 343-350. DOI: 10.11779/CJGE201502019
      [9]Conversion of anti-sliding piles into 2-dimensional discrete element simulation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(2).
      [10]ZHANG Hongwu, QIN Jianmin. Simulation of mechanical behaviors of granular materials by discrete element method based on mesoscale nonlinear contact law[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 1964-1969.
    • Cited by

      Periodical cited type(30)

      1. 阴琪翔,侯明姣,程强强,张梦钵. 水泥加固淤泥土力学与抗海水腐蚀性能研究. 化学工程师. 2024(02): 78-82 .
      2. 薛秀丽,朱龙,曾超峰,王硕,陈秋南,郭志广. 墙顶支撑对开挖前抽水引发基坑变形控制效果研究. 工程地质学报. 2024(02): 678-689 .
      3. 王立忠,赖踊卿,洪义,张友虎. 水平受荷桩“p-y+M-θ”分析方法. 岩土工程学报. 2024(05): 905-918 . 本站查看
      4. 刘世彪. 建筑深基坑逆作法施工技术研究. 工程建设与设计. 2024(10): 167-169 .
      5. 孟凯琪,刘志良,徐亮,李春立,李亮,于忠福,高原,李辉. 基于隆起变形分析的基坑坑底抗隆起稳定可靠度分析. 防灾减灾工程学报. 2024(03): 705-714 .
      6. 周越洲,杨慎银,王嵩,许名鑫,周汉香. 深厚淤泥软土地区某基坑坍塌事故分析及处理. 建筑结构. 2024(15): 128-135 .
      7. 孟凯琪,王铭浩,焦力,李亮,徐亮,胡俊,高原. 考虑基坑宽度及软弱土层厚度的基坑抗隆起稳定可靠度研究. 青岛理工大学学报. 2024(04): 35-44 .
      8. 刘毅,王海啸,王斌,周傲,位伟. 基于逐工况反演的基坑围护结构变形分析与探讨. 武汉大学学报(工学版). 2024(09): 1221-1231 .
      9. 覃震林. 超大深基坑的支护设计及变形预测研究. 甘肃科学学报. 2023(01): 93-99+122 .
      10. 王棣,田大浪. 含裂隙岩质深基坑桩锚支护结构变形特征研究. 岩土工程技术. 2023(02): 238-246 .
      11. 罗程程. 地铁宽基坑围护结构变形规律研究. 广东水利电力职业技术学院学报. 2023(02): 10-14 .
      12. 付鹏,石希,沈杰超,陈韵. 强降雨对粉质黏土地区基坑围护结构变形影响的研究. 建筑结构. 2023(S1): 2898-2901 .
      13. 刘伟,赵亚军,吕朋,朱清鹅,段君义,粟雨,赵抚民. 施工开挖对富水软弱土深基坑变形特性的影响. 建筑结构. 2023(S1): 2784-2789 .
      14. 詹晓波,纪元刚,姚王晶. 矿坑回填区域桩基施工工艺及基坑支护结构变形研究. 地基处理. 2023(04): 354-360 .
      15. 韩昊,李小来,苏毅,金哲,李书炀. 输电铁塔圆状基坑装配式护壁设计方法及影响因素分析. 东北电力技术. 2023(09): 6-12 .
      16. 何烈民,崔春雨,王思瑞,张乾青,郭慧强,高鹏. 深大基坑自动化监测及智能预警平台. 科学技术与工程. 2023(31): 13542-13549 .
      17. 褚为,彭朋,戴也,高立. 预成孔型钢水泥土搅拌桩在某深基坑中的应用. 土工基础. 2023(06): 845-851 .
      18. 芮勇勤,于晓莎. 地铁站间临近联络线基坑施工过程变形力学特性数值模拟. 沈阳建筑大学学报(自然科学版). 2022(01): 33-41 .
      19. 黄华,王胜,刘晓明,谭鑫,周业. 基坑抢险斜撑撑脚稳定性模型实验及数值分析. 科学技术与工程. 2022(04): 1574-1580 .
      20. 高利军. 邻近建筑物基坑开挖变形的特性分析及控制. 工程勘察. 2022(03): 14-21+78 .
      21. 周傲,王斌,李洁涛,周欣,夏文俊. 太湖隧道软土基坑长期稳定性分析与变形预测. 浙江大学学报(工学版). 2022(04): 692-701 .
      22. 倪小东,王琛,唐栋华,陆江发,王晓远,陈万春. 软土地区深基坑超大变形预警及诱因分析. 中南大学学报(自然科学版). 2022(06): 2245-2254 .
      23. 詹晓波,纪元刚,王家鹏,姚王晶. 建筑密集地区深基坑逆作法设计与施工技术研究. 建筑结构. 2022(S1): 3077-3081 .
      24. 周业,王胜,刘晓明,谭鑫,黄华. 新型装配式基坑抢险斜撑稳定性研究. 结构工程师. 2022(05): 140-147 .
      25. 余以强,严鑫,肖旦强,詹伟,胡智. 交通软土地下空间开发工程地质适宜性评价指标体系研究. 科技资讯. 2022(24): 67-71 .
      26. 赵宇,范存新,郭兵,田德新,刘得俊. 软弱地层对狭长深基坑变形的影响研究. 广东土木与建筑. 2021(04): 29-33 .
      27. 张卫中,闫少峰,黄学军,何进江,康钦容. 有机粉质粘土灌注桩孔壁垮塌机理及控制研究. 武汉理工大学学报. 2021(05): 80-84+91 .
      28. 吕仁军,蒋硕. 支护参数对基坑潜在滑移模式与稳定性的影响研究. 能源与环保. 2021(09): 108-113 .
      29. 陈赓华. 呼和浩特地铁2号线气象局站深基坑变形规律分析. 工程机械与维修. 2021(05): 179-181 .
      30. 王小东,张启志,曹中顺. 深基坑无支撑支护技术及其稳定性分析. 应用科技. 2021(06): 116-120 .

      Other cited types(14)

    Catalog

      Article views (463) PDF downloads (136) Cited by(44)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return