Citation: | WANG Tao, JI Jian. DEM analysis of mechanism and evolution of horizontal soil arching between piles in sand slopes[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1742-1752. DOI: 10.11779/CJGE20230309 |
[1] |
TERZAGHI K V. The shearing resistance of saturated soils and the angle between the planes of shear[C]// First International Conference on Soil Mechanics, Cambridge, 1936.
|
[2] |
LOW B, TANG S, CHOA V. Arching in piled embankments[J]. Journal of Geotechnical Engineering, 1994, 120(11): 1917-1938. doi: 10.1061/(ASCE)0733-9410(1994)120:11(1917)
|
[3] |
芮瑞, 黄成, 夏元友, 等. 砂填料桩承式路堤土拱效应模型试验[J]. 岩土工程学报, 2013, 35(11): 2082-2089. http://cge.nhri.cn/cn/article/id/15340
RUI Rui, HUANG Cheng, XIA Yuanyou, et al. Model tests on soil arching effects of piled embankments with sand fills[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2082-2089. (in Chinese) http://cge.nhri.cn/cn/article/id/15340
|
[4] |
钟卫, 张帅, 贺拿. 基于相对变形方法的桩后土拱模型试验研究[J]. 岩土力学, 2022, 43(增刊2): 315-326. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2022S2032.htm
ZHONG Wei, ZHANG Shuai, HE Na. Experimental study on soil arch behind anti-slide pile based on relative deformation method[J]. Rock and Soil Mechanics, 2022, 43(S2): 315-326. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2022S2032.htm
|
[5] |
蒋明镜, 杜文浩, 奚邦禄. 净砂与胶结砂土Trapdoor试验离散元数值模拟[J]. 地球科学与环境学报, 2018, 40(3): 347-354. doi: 10.3969/j.issn.1672-6561.2018.03.011
JIANG Mingjing, DU Wenhao, XI Banglu. Distinct element numerical simulation of trapdoor tests for pure and cemented sands[J]. Journal of Earth Sciences and Environment, 2018, 40(3): 347-354. (in Chinese) doi: 10.3969/j.issn.1672-6561.2018.03.011
|
[6] |
吕庆, 孙红月, 尚岳全. 抗滑桩桩后土拱形状及影响因素[J]. 哈尔滨工业大学学报, 2010, 42(4): 629-633. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201004028.htm
LÜ Qing, SUN Hongyue, SHANG Yuequan. Shape of soil arch behind anti-slide piles and its major influence factors[J]. Journal of Harbin Institute of Technology, 2010, 42(4): 629-633. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201004028.htm
|
[7] |
BOSSCHER P J, GRAY D H. Soil arching in sandy slopes[J]. Journal of Geotechnical Engineering, 1986, 112(6): 626-645. doi: 10.1061/(ASCE)0733-9410(1986)112:6(626)
|
[8] |
向先超, 张华, 蒋国盛, 等. 基于颗粒流的抗滑桩土拱效应研究[J]. 岩土工程学报, 2011, 33(3): 386-391. http://cge.nhri.cn/cn/article/id/13952
XIANG Xianchao, ZHANG Hua, JIANG Guosheng, et al. Soil arching effect of anti-slide piles based on particle flow method[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 386-391. (in Chinese) http://cge.nhri.cn/cn/article/id/13952
|
[9] |
GENG Z, JIN D, YUAN D. Face stability analysis of cohesion-frictional soils considering the soil arch effect and the instability failure process[J]. Computers and Geotechnics, 2023, 153: 105050. doi: 10.1016/j.compgeo.2022.105050
|
[10] |
林治平, 刘祚秋, 商秋婷. 抗滑桩结构土拱的分拆与联合研究[J]. 岩土力学, 2012, 33(10): 3109-3114. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210038.htm
LIN Zhiping, LIU Zuoqiu, SHANG Qiuting. Research on soil arch of anti-slide pile structure with methods of separation and combination[J]. Rock and Soil Mechanics, 2012, 33(10): 3109-3114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210038.htm
|
[11] |
蒋明镜. 现代土力学研究的新视野——宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. doi: 10.11779/CJGE201902001
JIANG Mingjing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) doi: 10.11779/CJGE201902001
|
[12] |
LI L, WU W, EL NAGGAR M H, et al. DEM analysis of the sand plug behavior during the installation process of open-ended pile[J]. Computers and Geotechnics, 2019, 109: 23-33. doi: 10.1016/j.compgeo.2019.01.014
|
[13] |
JIANG M, KONRAD J, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597. doi: 10.1016/S0266-352X(03)00064-8
|
[14] |
MINH N H, CHENG Y P. A DEM investigation of the effect of particle-size distribution on one-dimensional compression[J]. Géotechnique, 2013, 63(1): 44-53. doi: 10.1680/geot.10.P.058
|
[15] |
JI J, WANG T, ZHANG T, et al. DEM analysis of dynamic evolutions of lateral soil arching in sandy soil[J]. Journal of Engineering Mechanics, 2023, 149(6): 04023033. doi: 10.1061/JENMDT.EMENG-7108
|
[16] |
LAI H J, ZHENG J J, CUI M J, et al. "Soil arching" for piled embankments: insights from stress redistribution behaviour of DEM modelling[J]. Acta Geotechnica, 2020, 15(8): 2117-2136. doi: 10.1007/s11440-019-00902-x
|
[17] |
TANG H, HU X, XU C, et al. A novel approach for determining landslide pushing force based on landslide-pile interactions[J]. Engineering Geology, 2014, 182: 15-24. doi: 10.1016/j.enggeo.2014.07.024
|
[18] |
尹小涛, 郑亚娜, 马双科. 基于颗粒流数值试验的岩土材料内尺度比研究[J]. 岩土力学, 2011, 32(4): 1211-1215. doi: 10.3969/j.issn.1000-7598.2011.04.043
YIN Xiaotao, ZHENG Yana, MA Shuangke. Study of inner scale ratio of rock and soil material based on numerical tests of particle flow code[J]. Rock and Soil Mechanics, 2011, 32(4): 1211-1215. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.04.043
|
[19] |
CHANG X, WANG Y T, ZHOU W, et al. The influence of rotational resistance on critical state of granular materials[C]// Proceedings of the 7th International Conference on Discrete Element Methods. Singapore, 2017.
|
[20] |
蒋明镜, 李秀梅, 胡海军. 含抗转能力散粒体的宏微观力学特性数值分析[J]. 计算力学学报, 2011, 28(4): 622-628. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201104024.htm
JIANG Mingjing, LI Xiumei, HU Haijun. Numerical analysis of macro and micro mechanical properties of granular particles with anti-rotation capacity[J]. Chinese Journal of Computational Mechanics, 2011, 28(4): 622-628. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201104024.htm
|
[21] |
吕玺琳, 庞博, 朱长根, 等. 桩承式路堤桩土荷载分担特性物理模型试验研究[J]. 岩土工程学报, 2022, 44(增刊2): 50-53. doi: 10.11779/CJGE2022S2011
LÜ Xilin, PANG Bo, ZHU Changgen, et al. Physical model tests on load-sharing characteristics of piles and soils in pile-supported embankment[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 50-53. (in Chinese) doi: 10.11779/CJGE2022S2011
|
[1] | CAO Yang, LIU Yang, ZHANG Chaoyu, YANG Junjie, LI Guozheng. Synchronous grouting diffusion and parameter optimization of shield tunnels based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2119-2128. DOI: 10.11779/CJGE20230726 |
[2] | WANG Le, LI Yu, XU Zhijun, LIU Bo, ZHANG Chunhui, TIAN Yinghui. Discrete element study of method for installation forces of screw piles in sand under different advancement ratios[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1166-1176. DOI: 10.11779/CJGE20230204 |
[3] | Research on structural carbon dioxide hydrate bearing clay simulations with discrete element method[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240141 |
[4] | SHEN Zhi-fu, ZHANG Xu-yin, GAO Feng, WANG Zhi-hua, GAO Hong-mei. Discrete element method for clay considering irregular planar shape of clay platelets[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1654-1662. DOI: 10.11779/CJGE202209010 |
[5] | LIU Su, WANG Jian-feng. An approach for modelling particle breakage based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1706-1713. DOI: 10.11779/CJGE201809018 |
[6] | ZHANG Ke-fen, ZHANG Sheng, TENG Ji-dong, SHENG Dai-chao. Influences of self-organization of granular materials on particle crushing based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 743-751. DOI: 10.11779/CJGE201804019 |
[7] | ZHANG Cheng-lin, ZHOU Xiao-wen. Algorithm for modelling three-dimensional shape of sand based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 115-119. DOI: 10.11779/CJGE2015S1023 |
[8] | JIANG Ming-jing, LI Lei, ZHOU Ya-ping. Bearing properties of deep-sea methane hydrate-bearing foundation by discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 343-350. DOI: 10.11779/CJGE201502019 |
[9] | Conversion of anti-sliding piles into 2-dimensional discrete element simulation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(2). |
[10] | ZHANG Hongwu, QIN Jianmin. Simulation of mechanical behaviors of granular materials by discrete element method based on mesoscale nonlinear contact law[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 1964-1969. |
1. |
阴琪翔,侯明姣,程强强,张梦钵. 水泥加固淤泥土力学与抗海水腐蚀性能研究. 化学工程师. 2024(02): 78-82 .
![]() | |
2. |
薛秀丽,朱龙,曾超峰,王硕,陈秋南,郭志广. 墙顶支撑对开挖前抽水引发基坑变形控制效果研究. 工程地质学报. 2024(02): 678-689 .
![]() | |
3. |
王立忠,赖踊卿,洪义,张友虎. 水平受荷桩“p-y+M-θ”分析方法. 岩土工程学报. 2024(05): 905-918 .
![]() | |
4. |
刘世彪. 建筑深基坑逆作法施工技术研究. 工程建设与设计. 2024(10): 167-169 .
![]() | |
5. |
孟凯琪,刘志良,徐亮,李春立,李亮,于忠福,高原,李辉. 基于隆起变形分析的基坑坑底抗隆起稳定可靠度分析. 防灾减灾工程学报. 2024(03): 705-714 .
![]() | |
6. |
周越洲,杨慎银,王嵩,许名鑫,周汉香. 深厚淤泥软土地区某基坑坍塌事故分析及处理. 建筑结构. 2024(15): 128-135 .
![]() | |
7. |
孟凯琪,王铭浩,焦力,李亮,徐亮,胡俊,高原. 考虑基坑宽度及软弱土层厚度的基坑抗隆起稳定可靠度研究. 青岛理工大学学报. 2024(04): 35-44 .
![]() | |
8. |
刘毅,王海啸,王斌,周傲,位伟. 基于逐工况反演的基坑围护结构变形分析与探讨. 武汉大学学报(工学版). 2024(09): 1221-1231 .
![]() | |
9. |
覃震林. 超大深基坑的支护设计及变形预测研究. 甘肃科学学报. 2023(01): 93-99+122 .
![]() | |
10. |
王棣,田大浪. 含裂隙岩质深基坑桩锚支护结构变形特征研究. 岩土工程技术. 2023(02): 238-246 .
![]() | |
11. |
罗程程. 地铁宽基坑围护结构变形规律研究. 广东水利电力职业技术学院学报. 2023(02): 10-14 .
![]() | |
12. |
付鹏,石希,沈杰超,陈韵. 强降雨对粉质黏土地区基坑围护结构变形影响的研究. 建筑结构. 2023(S1): 2898-2901 .
![]() | |
13. |
刘伟,赵亚军,吕朋,朱清鹅,段君义,粟雨,赵抚民. 施工开挖对富水软弱土深基坑变形特性的影响. 建筑结构. 2023(S1): 2784-2789 .
![]() | |
14. |
詹晓波,纪元刚,姚王晶. 矿坑回填区域桩基施工工艺及基坑支护结构变形研究. 地基处理. 2023(04): 354-360 .
![]() | |
15. |
韩昊,李小来,苏毅,金哲,李书炀. 输电铁塔圆状基坑装配式护壁设计方法及影响因素分析. 东北电力技术. 2023(09): 6-12 .
![]() | |
16. |
何烈民,崔春雨,王思瑞,张乾青,郭慧强,高鹏. 深大基坑自动化监测及智能预警平台. 科学技术与工程. 2023(31): 13542-13549 .
![]() | |
17. |
褚为,彭朋,戴也,高立. 预成孔型钢水泥土搅拌桩在某深基坑中的应用. 土工基础. 2023(06): 845-851 .
![]() | |
18. |
芮勇勤,于晓莎. 地铁站间临近联络线基坑施工过程变形力学特性数值模拟. 沈阳建筑大学学报(自然科学版). 2022(01): 33-41 .
![]() | |
19. |
黄华,王胜,刘晓明,谭鑫,周业. 基坑抢险斜撑撑脚稳定性模型实验及数值分析. 科学技术与工程. 2022(04): 1574-1580 .
![]() | |
20. |
高利军. 邻近建筑物基坑开挖变形的特性分析及控制. 工程勘察. 2022(03): 14-21+78 .
![]() | |
21. |
周傲,王斌,李洁涛,周欣,夏文俊. 太湖隧道软土基坑长期稳定性分析与变形预测. 浙江大学学报(工学版). 2022(04): 692-701 .
![]() | |
22. |
倪小东,王琛,唐栋华,陆江发,王晓远,陈万春. 软土地区深基坑超大变形预警及诱因分析. 中南大学学报(自然科学版). 2022(06): 2245-2254 .
![]() | |
23. |
詹晓波,纪元刚,王家鹏,姚王晶. 建筑密集地区深基坑逆作法设计与施工技术研究. 建筑结构. 2022(S1): 3077-3081 .
![]() | |
24. |
周业,王胜,刘晓明,谭鑫,黄华. 新型装配式基坑抢险斜撑稳定性研究. 结构工程师. 2022(05): 140-147 .
![]() | |
25. |
余以强,严鑫,肖旦强,詹伟,胡智. 交通软土地下空间开发工程地质适宜性评价指标体系研究. 科技资讯. 2022(24): 67-71 .
![]() | |
26. |
赵宇,范存新,郭兵,田德新,刘得俊. 软弱地层对狭长深基坑变形的影响研究. 广东土木与建筑. 2021(04): 29-33 .
![]() | |
27. |
张卫中,闫少峰,黄学军,何进江,康钦容. 有机粉质粘土灌注桩孔壁垮塌机理及控制研究. 武汉理工大学学报. 2021(05): 80-84+91 .
![]() | |
28. |
吕仁军,蒋硕. 支护参数对基坑潜在滑移模式与稳定性的影响研究. 能源与环保. 2021(09): 108-113 .
![]() | |
29. |
陈赓华. 呼和浩特地铁2号线气象局站深基坑变形规律分析. 工程机械与维修. 2021(05): 179-181 .
![]() | |
30. |
王小东,张启志,曹中顺. 深基坑无支撑支护技术及其稳定性分析. 应用科技. 2021(06): 116-120 .
![]() |