WANG Le, LI Yu, XU Zhijun, LIU Bo, ZHANG Chunhui, TIAN Yinghui. Discrete element study of method for installation forces of screw piles in sand under different advancement ratios[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1166-1176. DOI: 10.11779/CJGE20230204
    Citation: WANG Le, LI Yu, XU Zhijun, LIU Bo, ZHANG Chunhui, TIAN Yinghui. Discrete element study of method for installation forces of screw piles in sand under different advancement ratios[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1166-1176. DOI: 10.11779/CJGE20230204

    Discrete element study of method for installation forces of screw piles in sand under different advancement ratios

    More Information
    • Received Date: March 08, 2023
    • Available Online: June 04, 2024
    • The installation of a screw pile, as a potential offshore wind power foundation form, is the key to its successful application in offshore wind power engineering. Based on the discrete element method, the installation forces of the screw pile installed under different advancement ratios in sand and the interaction between the screw pile and the surrounding soil are simulated with PFC3D. On the macro-level, the effects of the installation advancement ratio on the installation forces acting on the shaft, base and upper and lower surfaces of the helix of the screw pile are studied. Microscopically, the changes in porosity, coordination number and stresses in the surrounding soil during the installation of the screw pile are analyzed. The research shows that with the reduction of the advancement ratio, both the vertical force and the torque acting on the screw pile decrease, and the disturbance caused by installation of the screw pile to the surrounding soil also reduces. The mechanisms of installation of the screw pile are different for advancement ratios equal to or below 1. The research results provide some insights into the conditions required for the installation of screw piles under different advancement ratios.
    • [1]
      BAILEY H, SENIOR B, SIMMONS D, et al. Assessing underwater noise levels during pile-driving at an offshore windfarm and its potential effects on marine mammals[J]. Marine Pollution Bulletin, 2010, 60(6): 888-897. doi: 10.1016/j.marpolbul.2010.01.003
      [2]
      CERFONTAINE B, KNAPPETT J A, BROWN M J, et al. A finite element approach for determining the full load-displacement relationship of axially loaded shallow screw anchors, incorporating installation effects[J]. Canadian Geotechnical Journal, 2021, 58(4): 565-582. doi: 10.1139/cgj-2019-0548
      [3]
      HAO D X, WANG D, O'LOUGHLIN C D, et al. Tensile monotonic capacity of helical anchors in sand: interaction between helices[J]. Canadian Geotechnical Journal, 2019, 56(10): 1534-1543. doi: 10.1139/cgj-2018-0202
      [4]
      DING H, WANG L, ZHANG P, et al. The recycling torque of a single-plate helical pile for offshore wind turbines in dense sand[J]. Applied Sciences, 2019, 9(19): 4105. doi: 10.3390/app9194105
      [5]
      TANG C, PHOON K K. Statistical evaluation of model factors in reliability calibration of high-displacement helical piles under axial loading[J]. Canadian Geotechnical Journal, 2020, 57(2): 246-262. doi: 10.1139/cgj-2018-0754
      [6]
      CLEMENCE S P, LUTENEGGER A J. Industry survey of state of practice for helical piles and tiebacks[J]. DFI Journal-the Journal of the Deep Foundations Institute, 2015, 9(1): 21-41.
      [7]
      PERKO H A. Helical Piles a Practical Guide to Design and Installation[M]. Hoboken: J Wiley, 2009.
      [8]
      BYRNE B W, HOULSBY G T. Helical piles: an innovative foundation design option for offshore wind turbines[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 373(2035): 20140081. doi: 10.1098/rsta.2014.0081
      [9]
      GHALY A, HANNA A. Experimental and theoretical studies on installation torque of screw anchors[J]. Canadian Geotechnical Journal, 1991, 28(3): 353-364. doi: 10.1139/t91-046
      [10]
      DE HOLLANDA CAVALCANTI TSUHA C, AOKI N. Relationship between installation torque and uplift capacity of deep helical piles in sand[J]. Canadian Geotechnical Journal, 2010, 47(6): 635-647. doi: 10.1139/T09-128
      [11]
      SAKR M. Relationship between installation torque and axial capacities of helical piles in cohesionless soils[J]. Canadian Geotechnical Journal, 2015, 52(6): 747-759. doi: 10.1139/cgj-2013-0395
      [12]
      THERAR A B. Screw Piles as Offshore Foundations: Numerical and Physical Modelling[D]. Dundee: University of Dundee, 2018.
      [13]
      史旦达, 杨彦骋, 邓益兵, 等. 考虑转速比影响的砂土中螺旋挤扩钻具成孔特性宏细观模型试验[J]. 岩土力学, 2018, 39(6): 1981-1990, 1998. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806009.htm

      SHI Danda, YANG Yancheng, DENG Yibing, et al. Experimental study of the effect of drilling velocity ratio on the behavior of auger piling in sand[J]. Rock and Soil Mechanics, 2018, 39(6): 1981-1990, 1998. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806009.htm
      [14]
      SHARIF Y U, BROWN M J, CERFONTAINE B, et al. Effects of screw pile installation on installation requirements and in-service performance using the discrete element method[J]. Canadian Geotechnical Journal, 2021, 58(9): 1334-1350. doi: 10.1139/cgj-2020-0241
      [15]
      WANG L, ZHANG P Y, DING H Y, et al. The uplift capacity of single-plate helical pile in shallow dense sand including the influence of installation[J]. Marine Structures, 2020, 71: 102697. doi: 10.1016/j.marstruc.2019.102697
      [16]
      CERFONTAINE B, BROWN M J, KNAPPETT J A, et al. Control of screw pile installation to optimise performance for offshore energy applications[J]. Géotechnique, 2023, 73(3): 234-249. doi: 10.1680/jgeot.21.00118
      [17]
      SHI D D, YANG Y C, DENG Y B, et al. DEM modelling of screw pile penetration in loose granular assemblies considering the effect of drilling velocity ratio[J]. Granular Matter, 2019, 21(3): 74. doi: 10.1007/s10035-019-0933-3
      [18]
      CERFONTAINE B, CIANTIA M, BROWN M J, et al. DEM study of particle scale and penetration rate on the installation mechanisms of screw piles in sand[J]. Computers and Geotechnics, 2021, 139: 104380. doi: 10.1016/j.compgeo.2021.104380
      [19]
      KEITH L. The Performance of Pipeline Ploughs[D]. Dundee: University of Dundee, 2010
      [20]
      AL-DEFAE A H, CAUCIS K, KNAPPETT J A. Aftershocks and the whole-life seismic performance of granular slopes[J]. Géotechnique, 2013, 63(14): 1230-1244. doi: 10.1680/geot.12.P.149
      [21]
      LAUDER K D, BROWN M J, BRANSBY M F, et al. The influence of incorporating a forecutter on the performance of offshore pipeline ploughs[J]. Applied Ocean Research, 2013, 39: 121-130. doi: 10.1016/j.apor.2012.11.001
      [22]
      ARROYO M, BUTLANSKA J, GENS A, et al. Cone penetration tests in a virtual calibration chamber[J]. Géotechnique, 2011, 61(6): 525-531. doi: 10.1680/geot.9.P.067
      [23]
      CIANTIA M O, BOSCHI K, SHIRE T, et al. Numerical techniques for fast generation of large discrete-element models[J]. Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics, 2018, 171(4): 147-161. doi: 10.1680/jencm.18.00025
      [24]
      YU H S. Cavity Expansion Methods in Geomechanics[M]. Dordrecht: Kluwer Academic Publishers, 2000.
      [25]
      Itasca Consulting Group, Inc. PFC3D User's Manual[M]. Denver: Itasca Consulting Group, 2019.
      [26]
      DA CRUZ F, EMAM S, PROCHNOW M, et al. Rheophysics of dense granular materials: discrete simulation of plane shear flows[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(2 Pt 1): 021309.
      [27]
      KHOUBANI A, EVANS T M. An efficient flexible membrane boundary condition for DEM simulation of axisymmetric element tests[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(4): 694-715. doi: 10.1002/nag.2762
      [28]
      JANDA A, OOI J Y. DEM modeling of cone penetration and unconfined compression in cohesive solids[J]. Powder Technology, 2016, 293: 60-68. doi: 10.1016/j.powtec.2015.05.034
      [29]
      胡敏云, 肖斌, 张旭俊, 等. 粗粒土细观组构分析的影响因素研究[J]. 浙江工业大学学报, 2018, 46(3): 342-349. doi: 10.3969/j.issn.1006-4303.2018.03.019

      HU Minyun, XIAO Bin, ZHANG Xujun, et al. Study on influential factors of micro-fabric analysis of granular sand[J]. Journal of Zhejiang University of Technology, 2018, 46(3): 342-349. (in Chinese) doi: 10.3969/j.issn.1006-4303.2018.03.019
    • Related Articles

      [1]Superquadric discrete element simulation of the influence of particle shape and orientation on granular column collapse[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240875
      [2]CAO Yang, LIU Yang, ZHANG Chaoyu, YANG Junjie, LI Guozheng. Synchronous grouting diffusion and parameter optimization of shield tunnels based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2119-2128. DOI: 10.11779/CJGE20230726
      [3]LI Lichen, LIU Zhuo, LIU Hao, WU Wenbing, LUO Lunbo, JIANG Guosheng, MEI Guoxiong. DEM analysis of installation and bearing process of open-ended piles considering plugging effects[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1471-1480. DOI: 10.11779/CJGE20230340
      [4]SHEN Zhi-fu, ZHANG Xu-yin, GAO Feng, WANG Zhi-hua, GAO Hong-mei. Discrete element method for clay considering irregular planar shape of clay platelets[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1654-1662. DOI: 10.11779/CJGE202209010
      [5]LIU Yang, FAN Meng, YAN Zhou-yi. DEM simulation of instability mode in sand under constant shear drained conditions[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 467-475. DOI: 10.11779/CJGE202003008
      [6]LIU Su, WANG Jian-feng. An approach for modelling particle breakage based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1706-1713. DOI: 10.11779/CJGE201809018
      [7]ZHANG Ke-fen, ZHANG Sheng, TENG Ji-dong, SHENG Dai-chao. Influences of self-organization of granular materials on particle crushing based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 743-751. DOI: 10.11779/CJGE201804019
      [8]ZHANG Cheng-lin, ZHOU Xiao-wen. Algorithm for modelling three-dimensional shape of sand based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 115-119. DOI: 10.11779/CJGE2015S1023
      [9]LIU Yang, ZHOU Jian. Nonlinear interpolation method for strain calculation in discrete media[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1129-1133.
      [10]Xing Jibo, Wang Yongjia. improvement of Discrete Element Method and its Applications in Granular Media[J]. Chinese Journal of Geotechnical Engineering, 1990, 12(5): 51-57.
    • Cited by

      Periodical cited type(4)

      1. 胡俊伟,罗瑞鹏,王春海,钟莹庆,汪磊. 考虑填土模量变化的返包式加筋土挡墙面板水平位移计算方法. 科学技术与工程. 2025(14): 6035-6043 .
      2. 陈建,刘泽,童乐,曹峥,李梦竹. 不同加筋条件对高填方路堤变形控制效果数值分析. 市政技术. 2024(12): 109-116 .
      3. 张凯封. 边坡工程中支护结构形式浅析. 四川建筑. 2023(05): 119-120 .
      4. 李丹,易杨,罗琛,吴迪,徐超,吴建建. 土工织物顶压蠕变特性与折减系数研究. 水利学报. 2023(10): 1210-1220+1235 .

      Other cited types(4)

    Catalog

      Article views (421) PDF downloads (97) Cited by(8)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return