Citation: | WANG Le, LI Yu, XU Zhijun, LIU Bo, ZHANG Chunhui, TIAN Yinghui. Discrete element study of method for installation forces of screw piles in sand under different advancement ratios[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1166-1176. DOI: 10.11779/CJGE20230204 |
[1] |
BAILEY H, SENIOR B, SIMMONS D, et al. Assessing underwater noise levels during pile-driving at an offshore windfarm and its potential effects on marine mammals[J]. Marine Pollution Bulletin, 2010, 60(6): 888-897. doi: 10.1016/j.marpolbul.2010.01.003
|
[2] |
CERFONTAINE B, KNAPPETT J A, BROWN M J, et al. A finite element approach for determining the full load-displacement relationship of axially loaded shallow screw anchors, incorporating installation effects[J]. Canadian Geotechnical Journal, 2021, 58(4): 565-582. doi: 10.1139/cgj-2019-0548
|
[3] |
HAO D X, WANG D, O'LOUGHLIN C D, et al. Tensile monotonic capacity of helical anchors in sand: interaction between helices[J]. Canadian Geotechnical Journal, 2019, 56(10): 1534-1543. doi: 10.1139/cgj-2018-0202
|
[4] |
DING H, WANG L, ZHANG P, et al. The recycling torque of a single-plate helical pile for offshore wind turbines in dense sand[J]. Applied Sciences, 2019, 9(19): 4105. doi: 10.3390/app9194105
|
[5] |
TANG C, PHOON K K. Statistical evaluation of model factors in reliability calibration of high-displacement helical piles under axial loading[J]. Canadian Geotechnical Journal, 2020, 57(2): 246-262. doi: 10.1139/cgj-2018-0754
|
[6] |
CLEMENCE S P, LUTENEGGER A J. Industry survey of state of practice for helical piles and tiebacks[J]. DFI Journal-the Journal of the Deep Foundations Institute, 2015, 9(1): 21-41.
|
[7] |
PERKO H A. Helical Piles a Practical Guide to Design and Installation[M]. Hoboken: J Wiley, 2009.
|
[8] |
BYRNE B W, HOULSBY G T. Helical piles: an innovative foundation design option for offshore wind turbines[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 373(2035): 20140081. doi: 10.1098/rsta.2014.0081
|
[9] |
GHALY A, HANNA A. Experimental and theoretical studies on installation torque of screw anchors[J]. Canadian Geotechnical Journal, 1991, 28(3): 353-364. doi: 10.1139/t91-046
|
[10] |
DE HOLLANDA CAVALCANTI TSUHA C, AOKI N. Relationship between installation torque and uplift capacity of deep helical piles in sand[J]. Canadian Geotechnical Journal, 2010, 47(6): 635-647. doi: 10.1139/T09-128
|
[11] |
SAKR M. Relationship between installation torque and axial capacities of helical piles in cohesionless soils[J]. Canadian Geotechnical Journal, 2015, 52(6): 747-759. doi: 10.1139/cgj-2013-0395
|
[12] |
THERAR A B. Screw Piles as Offshore Foundations: Numerical and Physical Modelling[D]. Dundee: University of Dundee, 2018.
|
[13] |
史旦达, 杨彦骋, 邓益兵, 等. 考虑转速比影响的砂土中螺旋挤扩钻具成孔特性宏细观模型试验[J]. 岩土力学, 2018, 39(6): 1981-1990, 1998. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806009.htm
SHI Danda, YANG Yancheng, DENG Yibing, et al. Experimental study of the effect of drilling velocity ratio on the behavior of auger piling in sand[J]. Rock and Soil Mechanics, 2018, 39(6): 1981-1990, 1998. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806009.htm
|
[14] |
SHARIF Y U, BROWN M J, CERFONTAINE B, et al. Effects of screw pile installation on installation requirements and in-service performance using the discrete element method[J]. Canadian Geotechnical Journal, 2021, 58(9): 1334-1350. doi: 10.1139/cgj-2020-0241
|
[15] |
WANG L, ZHANG P Y, DING H Y, et al. The uplift capacity of single-plate helical pile in shallow dense sand including the influence of installation[J]. Marine Structures, 2020, 71: 102697. doi: 10.1016/j.marstruc.2019.102697
|
[16] |
CERFONTAINE B, BROWN M J, KNAPPETT J A, et al. Control of screw pile installation to optimise performance for offshore energy applications[J]. Géotechnique, 2023, 73(3): 234-249. doi: 10.1680/jgeot.21.00118
|
[17] |
SHI D D, YANG Y C, DENG Y B, et al. DEM modelling of screw pile penetration in loose granular assemblies considering the effect of drilling velocity ratio[J]. Granular Matter, 2019, 21(3): 74. doi: 10.1007/s10035-019-0933-3
|
[18] |
CERFONTAINE B, CIANTIA M, BROWN M J, et al. DEM study of particle scale and penetration rate on the installation mechanisms of screw piles in sand[J]. Computers and Geotechnics, 2021, 139: 104380. doi: 10.1016/j.compgeo.2021.104380
|
[19] |
KEITH L. The Performance of Pipeline Ploughs[D]. Dundee: University of Dundee, 2010
|
[20] |
AL-DEFAE A H, CAUCIS K, KNAPPETT J A. Aftershocks and the whole-life seismic performance of granular slopes[J]. Géotechnique, 2013, 63(14): 1230-1244. doi: 10.1680/geot.12.P.149
|
[21] |
LAUDER K D, BROWN M J, BRANSBY M F, et al. The influence of incorporating a forecutter on the performance of offshore pipeline ploughs[J]. Applied Ocean Research, 2013, 39: 121-130. doi: 10.1016/j.apor.2012.11.001
|
[22] |
ARROYO M, BUTLANSKA J, GENS A, et al. Cone penetration tests in a virtual calibration chamber[J]. Géotechnique, 2011, 61(6): 525-531. doi: 10.1680/geot.9.P.067
|
[23] |
CIANTIA M O, BOSCHI K, SHIRE T, et al. Numerical techniques for fast generation of large discrete-element models[J]. Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics, 2018, 171(4): 147-161. doi: 10.1680/jencm.18.00025
|
[24] |
YU H S. Cavity Expansion Methods in Geomechanics[M]. Dordrecht: Kluwer Academic Publishers, 2000.
|
[25] |
Itasca Consulting Group, Inc. PFC3D User's Manual[M]. Denver: Itasca Consulting Group, 2019.
|
[26] |
DA CRUZ F, EMAM S, PROCHNOW M, et al. Rheophysics of dense granular materials: discrete simulation of plane shear flows[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(2 Pt 1): 021309.
|
[27] |
KHOUBANI A, EVANS T M. An efficient flexible membrane boundary condition for DEM simulation of axisymmetric element tests[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(4): 694-715. doi: 10.1002/nag.2762
|
[28] |
JANDA A, OOI J Y. DEM modeling of cone penetration and unconfined compression in cohesive solids[J]. Powder Technology, 2016, 293: 60-68. doi: 10.1016/j.powtec.2015.05.034
|
[29] |
胡敏云, 肖斌, 张旭俊, 等. 粗粒土细观组构分析的影响因素研究[J]. 浙江工业大学学报, 2018, 46(3): 342-349. doi: 10.3969/j.issn.1006-4303.2018.03.019
HU Minyun, XIAO Bin, ZHANG Xujun, et al. Study on influential factors of micro-fabric analysis of granular sand[J]. Journal of Zhejiang University of Technology, 2018, 46(3): 342-349. (in Chinese) doi: 10.3969/j.issn.1006-4303.2018.03.019
|
1. |
刘建荣,栾恒杰,蒋宇静,商和福,王明强,王长盛,张孙豪. 法向边界条件对锚固节理岩体剪切力学及声发射特征的影响研究. 矿业科学学报. 2025(02): 173-183 .
![]() |