• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
XU Ping, SHAO Sheng-jun, FANG Ling-yun, SUN Zhi-jun. Cross-isotropic strength criteria based on spatial plane variation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1036-1043. DOI: 10.11779/CJGE202206007
Citation: XU Ping, SHAO Sheng-jun, FANG Ling-yun, SUN Zhi-jun. Cross-isotropic strength criteria based on spatial plane variation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1036-1043. DOI: 10.11779/CJGE202206007

Cross-isotropic strength criteria based on spatial plane variation

More Information
  • Received Date: May 16, 2021
  • Available Online: September 22, 2022
  • The geotechnical materials in nature are affected by the natural sedimentation and often have significant cross-isotropic characteristics. The difference in strength and deformation of structural units of soil in different directions is the main issue that should be considered when affecting the design and construction of large-scale civil and hydraulic projects. The research on the cross isotropy of geotechnical materials is of great scientific significance to the safety and stability of actual engineering structures. Based on the study on the relationship among the strength variation of octahedral principal stress space domain, the spatial mobilized plane and the stress state, a comprehensive parameter reflecting the stress conditions and material properties is defined. By analyzing the relationship among this parameter, the failure stress and the stress state, the physical meaning of the parameter is clarified, and based on the space plane strength theory, the sliding failure of the three principal stress planes is considered. It is assumed that the space on the ratio of the shear stress to the normal stress is constant, and a cross-isotropic failure criterion is established considering that the spatial sliding surface of geomaterials changes with the stress conditions of the spatial stress domain. Compared with the experimental results, it is shown that the cross-isotropic failure criterion based on the spatial mobilized plane variation can better reflect the strength characteristics of the materials, and it is particularly applicable to the strength prediction of the stress region when the principal stress axis deflects.
  • [1]
    路德春, 梁靖宇, 王国盛, 等. 横观各向同性土的三维强度准则[J]. 岩土工程学报, 2018, 40(1): 54–63. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801005.htm

    LU De-chun, LIANG Jing-yu, WANG Guo-sheng, et al. Three- dimensional strength criterion for transverse isotropic geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 54–63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801005.htm
    [2]
    罗汀, 李萌, 孔玉侠, 等. 基于SMP的岩土各向异性强度准则[J]. 岩土力学, 2009, 30(增刊2): 127–131. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S2029.htm

    LUO Ting, LI Meng, KONG Yu-xia, et al. Failure criterion based on SMP for anisotropic geomaterials[J]. Rock and Soil Mechanics, 2009, 30(S2): 127–131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S2029.htm
    [3]
    王林, 龙冈文夫. 关于沉积软岩固有各向异性特性的研究[J]. 岩石力学与工程学报, 2003, 22(6): 894–898. doi: 10.3321/j.issn:1000-6915.2003.06.003

    WANG Lin, TATSUOKA Fumio. Examining anisotropy of sedimentary soft rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(6): 894–898. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.06.003
    [4]
    ODA M, KOISHIKAWA I, HIGUCHI T. Experimental study of anisotropic shear strength of sand by plane strain test[J]. Soils and Foundations, 1978, 18(1): 25–38. doi: 10.3208/sandf1972.18.25
    [5]
    殷宗泽. 土的侧膨胀性及其对土石坝应力变形的影响[J]. 水利学报, 2000, 31(7): 49–54, 60. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200007008.htm

    YIN Zong-ze. The effect of soil lateral dilation behavior on stress and strain of earth and rockfill dams[J]. Journal of Hydraulic Engineering, 2000, 31(7): 49–54, 60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200007008.htm
    [6]
    MATSUOKA H, NAKAI T R. Stress-deformation and strength characteristics of soil under three different principal stresses[J]. Proceedings of the Japan Society of Civil Engineers, 1974(232): 59–70.
    [7]
    LADE P V, DUNCAN J M. Elastoplastic stress-strain theory for cohesionless soil[J]. Journal of the Geotechnical Engineering Division, 1975, 101(10): 1037–1053. doi: 10.1061/AJGEB6.0000204
    [8]
    MATSUOKA H, HOSHIKAWA T, UENO K. A general failure criterion and stress-strain relation for granular materials to metals[J]. Soils and Foundations, 1990, 30(2): 119–127. doi: 10.3208/sandf1972.30.2_119
    [9]
    宋美娜. 考虑各向异性的广义非线性强度准则[D]. 北京: 北京航空航天大学, 2008.

    SONG Mei-na. Generalized Nonlinear Strength Criterion Considering Anisotropy[D]. Beijing: Beihang University, 2008. (in Chinese)
    [10]
    李学丰, 黄茂松, 钱建固. 宏细观结合的砂土各向异性破坏准则[J]. 岩石力学与工程学报, 2010, 29(9): 1885–1892. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201009019.htm

    LI Xue-feng, HUANG Mao-song, QIAN Jian-gu. Failure criterion of anisotropic sand with method of macro-meso incorporation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1885–1892. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201009019.htm
    [11]
    LI X S, DAFALIAS Y F. Constitutive modeling of inherently anisotropic sand behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 868–880. doi: 10.1061/(ASCE)1090-0241(2002)128:10(868)
    [12]
    DAFALIAS Y F, PAPADIMITRIOU A G, LI X S. Sand plasticity model accounting for inherent fabric anisotropy[J]. Journal of Engineering Mechanics, 2004, 130(11): 1319–1333. doi: 10.1061/(ASCE)0733-9399(2004)130:11(1319)
    [13]
    姚仰平, 孔玉侠. 横观各向同性土强度与破坏准则的研究[J]. 水利学报, 2012, 43(1): 43–50. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201201009.htm

    YAO Yang-ping, KONG Yu-xia. Study on strength and failure criterion of cross-anisotropic soil[J]. Journal of Hydraulic Engineering, 2012, 43(1): 43–50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201201009.htm
    [14]
    YAO Y P, KONG Y X. Extended UH model: three-dimensional unified hardening model for anisotropic clays[J]. Journal of Engineering Mechanics, 2012, 138(7): 853–866. doi: 10.1061/(ASCE)EM.1943-7889.0000397
    [15]
    姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193–217. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502002.htm

    YAO Yang-ping. Advanced UH models for soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193–217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502002.htm
    [16]
    YAO Y, TIAN Y, GAO Z. Anisotropic UH model for soils based on a simple transformed stress method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(1): 54–78.
    [17]
    许萍, 邵生俊, 张帅. 黄土(Q3)横观各向同性强度准则研究[J]. 岩土工程学报, 2018, 40(1): 116–121. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801014.htm

    XU Ping, SHAO Sheng-jun, ZHANG Shuai. Strength criterion of cross-anisotropic Q3 loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 116–121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801014.htm
  • Related Articles

    [1]Study on the strength criterion of transversely isotropic unsaturated soil considering the change of spatial sliding surface[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20241077
    [2]XU Ping, SHAO Sheng-jun, ZHANG Shuai. Strength criterion of cross-anisotropic Q3 loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 116-121. DOI: 10.11779/CJGE201801011
    [3]LU De-chun, LIANG Jing-yu, WANG Guo-sheng, DU Xiu-li. Three-dimensional strength criterion for transverse isotropic geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 54-63. DOI: 10.11779/CJGE201801004
    [4]CAO Wei, WANG Rui, ZHANG Jian-min. New strength criterion for sand with cross-anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2026-2032. DOI: 10.11779/CJGE201611012
    [5]ZUO Shuang-ying, SHI Wen-bing, LIANG Feng, HUANG Chun, ZHAO Rui. Numerical simulation and engineering application for failure modes and criterion of layered anisotropic rock mass[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 191-196. DOI: 10.11779/CJGE2015S1036
    [6]Failure criterion for granular soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4).
    [7]ZOU Jinfeng, LI Liang, YANG Xiaoli, DENG Zongwei. Study on the ultimate pullout force of pre-stressed cable based on nonlinear Mohr-Coulomb failure criterion[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 107-111.
    [8]YANG Xueqiang, ZHU Zhizheng, HE Shixiu. Researches on failure criteria of Lade-Duncan,Matsuoka-Nakai and Ottosen[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 337-342.
    [9]Shen Zhujiang. Summary on the Failure Griteria and Yield Functions[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(1): 1-8.
    [10]Shao Shengjun, Xie Dingyi. Dynamic Strength and Failure Criterion of Saturated Sand[J]. Chinese Journal of Geotechnical Engineering, 1991, 13(1): 24-33.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views (155) PDF downloads (129) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return